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Abstract
Most psychological studies on causal cognition have focused on how people
make predictions from causes to effects or how they assess causal strength
for general causal relationships (e.g., “smoking causes cancer”). In the past
years, there has been a surge of interest in other types of causal judgments,
such as diagnostic inferences or causal selection. Our focus here is on how
people assess singular causation relations between cause and effect events
that occurred at a particular spatiotemporal location (e.g., “Mary’s having
taking this pill caused her sickness.”). The analysis of singular causation
has received much attention in philosophy, but relatively few psychological
studies have investigated how lay people assess these relations. Based on
the power PC model of causal attribution proposed by Cheng and Novick
(2005), we have developed and tested a new computational model of singu-
lar causation judgments integrating covariation, temporal, and mechanism
information. We provide an overview of this research and outline important
questions for future research.

Keywords: singular causation, causal attribution, time, mechanisms, causal
Bayes nets

Imagine you are taking a dose of a certain medication known to sometimes cause
stomach cramps as a side effect. Later that day you actually feel an unpleasant pain in your
stomach. Did your taking the drug cause your stomach cramps or did the two events merely
co-occur coincidentally and your stomach cramps were actually caused by some alternative
cause? Maybe instead of the drug it was your eating a salad for lunch that was possibly
spoiled.

The question being asked in the example is a singular causation question because it

Simon Stephan https://orcid.org/0000-0002-6557-9637
Michael R. Waldmann https://orcid.org/0000-0002-8831-552X
Correspondence concerning this article should be addressed to Simon Stephan, Department of Psychol-

ogy, University of Göttingen, Gosslerstr. 14, 37073 Göttingen, Germany. E-mail: simon.stephan@psych.uni-
goettingen.de. The presented research was supported by a research grant of the Deutsche Forschungsge-
meinschaft (WA 621/24-1).

https://orcid.org/0000-0002-6557-9637
https://orcid.org/0000-0002-8831-552X


COVARIATION TIME AND MECHANISMS IN SINGULAR CAUSATION 2

refers to a potential causal connection between events that actually occurred at a particular
time in a particular place. Singular causation can be contrasted with general causation,
which refers to causal relations obtaining between event types instead of event tokens. For
example, the claim “Taking this type of medication causes stomach cramps” is a generic-
level causal claim, whereas the claim that “My having taken this particular medication
this morning was the cause of my stomach cramps at noon” is a singular-level causal claim.
Singular causation queries are ubiquitous in our lives. Answers to singular causation queries
often guide the goals we set and the actions we take to achieve them. For example, if it
is true that a particular law passed by parliament successfully reduces the rate of alcohol
abuse among young people, then working on a similar law targeting smoking may be a
worthwhile endeavor.

Despite the prevalence of singular causation queries in our daily lives and their
importance in professional disciplines such as medicine, answering the question of how we
can know that two events were causally connected is far from trivial. The reason for this
difficulty is, as has famously been noted by Hume (1748/1975), that causal connections
between individual events are not directly perceivable (see also Cheng and Ichien, in this
volume).

While the analysis of singular causation has kept philosophers busy for decades (see
Beebee, Hitchcock, & Menzies, 2009) (see also Danks, 2017), most studies in psychology
on causal cognition have focused on how people learn about general causal relationships
(e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005; Liljeholm & Cheng, 2007) (see Cheng &
Buehner, 2012; Waldmann, 2017; Waldmann & Hagmayer, 2013, for overviews), how they
use their general causation knowledge to make predictions (e.g., Rehder, 2014; Waldmann,
2000), or how they designate among a set of potential causes specific ones the cause of that
effect (i.e., causal selection) (see, e.g., Cheng & Novick, 1991; Kahneman & Miller, 1986;
Kominsky, Phillips, Gerstenberg, Lagnado, & Knobe, 2015; Samland, Josephs, Waldmann,
& Rakoczy, 2016; Samland & Waldmann, 2016).

We recently have begun to investigate how reasoners use their general causation
knowledge to answer singular causation queries (Stephan, Mayrhofer, & Waldmann, 2020;
Stephan & Waldmann, 2018, under review). Building on the power PC model of causal
attribution proposed by (Cheng & Novick, 2005), we have proposed the generalized power
PC model of singular causation judgments. The model computes the probability that a
particular target cause c actually caused an observed target effect e. The model combines
information about the general strengths of the potential causes of the target effect, which can
be induced based on covariational information, with information about temporal relations
between causes and effects (Stephan et al., 2020).

Apart from covariation and temporal properties, an important cue helping in the
assessment of singular causation is information about the mechanisms linking causes and
effects (see, e.g., Cartwright, 2015, 2017; Danks, 2005). Cartwright (2017) lists the discovery
of intermediate steps in a causal chain as one of the crucial indicators of singular causation.
Also, psychological studies (e.g., Ahn, Kalish, Medin, & Gelman, 1995; Johnson & Keil,
2018) have shown that reasoners are sensitive to mechanism information when making
causal judgments (see Johnson & Ahn, 2017, for an overview): when asked to determine
the singular cause of an observed effect, reasoners tend to search for information about the
status of known causal mechanism variables (Johnson & Keil, 2018).
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What has been missing in the literature is a formal computational model explaining
why causal mechanism is helpful for the assessment of singular causation. We have recently
(Stephan & Waldmann, under review) proposed an extension of our generalized power PC
model of singular causation judgments that incorporates causal mechanism information,
and thus provides an answer to this question.

In this chapter, we will provide an overview of our latest work. The focus will be
on our model, but we will also briefly summarize key empirical findings. Since our model
is a generalization of Cheng and Novick’s (2005) power PC model of causal attribution, we
will start with a brief review of their model (which we henceforth refer to as the standard
model), and show what the standard model is getting right and where it fails. We will then
summarize our generalized power PC model of singular causation judgments and demon-
strate how it overcomes shortcomings of the standard model. Then, we will show that our
model can also be used to provide a formal answer to the question under what conditions
causal mechanism information is a valuable cue in the assessment of singular causation. We
will end with a discussion of open questions and ideas for future studies.

The role of causal strength information in singular causation judgments - the
standard power PC model of causal attribution

The standard power PC model of causal attribution (Cheng & Novick, 2005) is an
application of Cheng’s (1997) causal power PC theory to situations in which reasoners want
answer different types of causal attribution queries. For example, reasoners might observe
an effect event (e) and want to know the probability that different candidate causes actually
caused the observed effect. A different query might start with the observed co-occurence
of a potential cause and effect event (c and e), and ask about the probability that this co-
occurrence is causal as opposed to coincidental. According to the standard model, to obtain
this probability reasoners need to apply their knowledge about the general causal strength
with which C generates E, as well as the strength of potential alternative causes A of the ef-
fect. As has been shown by Cheng (1997), the strength (or power) of a target cause C, which
is defined as the probability with which the target cause generates the effect independent
of alternative causes (A), can be induced from observable patterns of covariation between
a target cause and an effect given certain background conditions (see Liljeholm & Cheng,
2007; Novick & Cheng, 2004) by applying the following equation: powerc = ∆P

1−P (e|¬c) . Un-
der the causal Bayes net framework (Glymour, 2001; Gopnik et al., 2004; Pearl, 1988, 2000;
Sloman, 2005), causal strength as defined by this equation corresponds to the parameter wc

of the causal arrow connecting C to E within a common-effect causal model in which the
target cause C and an alternative cause A combine according to a noisy-OR gate (Glymour,
2003; Griffiths & Tenenbaum, 2005; Pearl, 1988). A graphical illustration of such a causal
model is shown in Fig. 1a. The additional parameters ba and bc represent the base rates
of the alternative and the target cause, respectively. The parameter wa denotes A’s causal
strength (or power).

To illustrate how the standard power PC model of causal attribution applies knowl-
edge about the causal strengths of the potential causes to attribute causality in a singular
case, we will focus on a situation in which a reasoner has observed that C, A, and E have
actually occurred in a specific situation (i.e., C = 1 or c, A = 1 or a, and E = 1 or e).
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Figure 1

Different causal models in which C and A represent root causes of a common target
effect E.
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Note. (a) a common-effect model with two causes, (b) an augmented version of that model
with causal mechanism variables, (c) a model in which C and A generate E via different al-
ternative mechanism paths. In this last model, the blue curves represent the causal latencies
of the respective causal arrows. The causal link with the round head denotes an inhibitory
link.

According to the standard model, the probability that c was the singular cause of e in this
case is given by:

P (c→ e|c, a, e) = wc

wc + wa − wc · wa
= wc

P (e|c, a) . (1)

The standard model thus predicts that in a situation in which C, A, and E are
present the probability that c caused e corresponds to C’s general causal strength divided
by the conditional probability of the effect given the presence of the two potential causes
C and A. Situations in which one or both of the potential causes are unobserved can also
be modeled. In this case, the causes’ strength parameters need to be multiplied with their
corresponding base rate parameters (bc and ba).

Equation 1 captures a number of intuitions about singular causation, which are
summarized in Fig. 2. The different pairs of panels on the graphs’ x-axes show different
contingency tables. In each pair, the right panel shows cases in which only the alternative
cause is present while the target cause is absent (¬c, a), and the left panel contains cases in
which both potential causes are present (c, a). Cases in which the effect is present (e) are
depicted as gray circles. P (c→ e|c, a, e) as defined in Equation 1 can be understood as the
relative frequency of gray circles in the left panel that were produced by the target cause C.
In Fig. 2a, the causal strength wc of the target cause C increases from the left to the right
contingency data set (from wc = 0.2 to wc = 0.6 to wc = 1.0), while the strength wa of
the alternative cause remains constant (wa = 0.25). The graph shows that the probability
that c caused e increases if wc increases. The model thus captures the intuition that we
should be more confident that the target cause actually caused the target effect in a specific
situation if this cause is generally more likely to produce the effect.

The right graph shows another plausible way of reasoning about singular causation
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Figure 2

Predictions of the standard power PC model of causal attribution for different levels
of wc vs. wa
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that is captured by the model. This time the target cause’s strength is constant (wc = 0.2)
while the strength of the alternative cause decreases (from wa = 0.75 to wa = 0.40 to
wa = 0). The graph shows that P (c → e|c, a, e) increases with decreasing strength of the
alternative cause. The model captures the intuition that a candidate cause is more likely
to be the singular cause of the effect if alternative causes are unlikely to produce the effect.
In the case in which an alternative cause has a strength of zero, this potential cause can
be ruled out as the effect’s singular cause. It therefore must have been the target cause
that produced the effect, no matter how weak this cause generally is. This example shows
that Equation 1 instantiates a reasoning principle that philosophers have called abductive
reasoning, reasoning by elimination, or Holmesian inference (Bird, 2005, 2007, 2010).

Incorporating the possibility of causal preemption - the generalized power PC
model of singular causation judgments

In Stephan and Waldmann (2018) we have shown that a key problem of the standard
model is that it solely focuses on the strengths of the potential causes of the target effect
but neglects cases of potential preemption. Equation 1 predicts that the target cause is
the singular cause of the target effect whenever the target cause is sufficiently strong to
produce the effect. However, in the philosophical literature cases of redundant causation
involving possible preemption have been discussed demonstrating that causal sufficiency of a
target cause is itself not sufficient to conclude that a cause generated the effect in a singular
case (see, e.g., Hitchcock, 2007; Paul & Hall, 2013). A cause that otherwise is sufficient to
generate the effect might have been causally preempted in its efficacy on a singular occasion
by an alternative cause that was simultaneously present and also sufficiently strong to
generate the effect. A classic scenario in the philosophical literature illustrating the problem
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Figure 3

Model predictions and results of Experiment 1a from Stephan and Waldmann (2018)
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of causal preemption involves two rock throwers: Billy and Suzy are perfectly precise rock
throwers, which means that neither of them ever fails to hit and destroy glass bottles when
throwing stones at them. On a particular occasion, both protagonists end up throwing their
rocks towards the same bottle. Both are throwing their rocks with identical force, but Suzy
manages to throw her rock a little bit earlier than Billy. The bottle shatters. Intuitively, it
was Suzy’s and not Billy’s throwing that was the singular cause of the bottle’s shattering,
even though we know that Billy’s throwing was precise and strong enough to do the job.

To handle the problem of causal preemption, we (Stephan & Waldmann, 2018) have
proposed the generalized power PC model of singular causation judgments, which is given
by the following equation:

P (c→ e|c, a, e) = wc − wc · wa · α
wc + wa − wc · wa

= wc · (1− wa · α)
P (e|c, a) . (2)

The generalized model extends the numerator of Equation 1 by the product of the
potential causes’ causal strength and an additional weighting parameter α. The product
wc · wa · α corresponds to the probability of causal preemption of target cause c by the
alternative cause a: the product of the causes’ strength parameters, wc·wa, is the probability
that both causes are simultaneously strong enough to generate the effect. This product is
relevant because the possibility of causal preemption only arises on occasions on which both
potential causes have sufficient strength to produce the effect. On such occasions it needs
to be determined how likely it is that the target cause had indeed been preempted the
alternative cause. This probability is given by the α parameter. For example, an α value of
1.0 means that the target cause is always preempted by the alternative cause on occasions
on which both a strong enough to produce the effect. Because wc ·wa · α is the probability
of causal preemption of the target cause by its competitor, it must be subtracted from the
target cause’s strength in the equation’s numerator.

In Stephan andWaldmann (2018) we suggested that the preemptive relation between
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the competing causes (i.e., the α parameter in our model) can be determined based on
assumptions about their temporal relation. We also hypothesized that lay people would
intuitively incorporate assumptions about the causes’ temporal relation in their singular
causation judgments, even if temporal information is not explicitly mentioned in a situation.
To test this hypothesis, we conducted an experiment in which we employed a standard causal
induction paradigm (see, e.g., Buehner & Cheng, 1997; Griffiths & Tenenbaum, 2005) as
it is typically used in studies on how reasoners infer general causal relationships based on
contingency data. We presented our participants with a fictitious scenario in which they
were asked to take the perspective of biologists conducting an experiment to learn whether
a particular chemical substance causes the expression of a particular gene in mice. The
fictitious experiment was introduced as a classical randomized control trial (RCT). The
results were presented in summary format, similar to the panels shown on the x-axes in
Fig. 3. We tested three contingency data sets (see Fig. 3). In each data set, all mice of the
treatment group (C) were expressing the gene (i.e., wc = 1.0), while the relative frequency
of the control mice (¬C) expressing the gene because of alternative causes varied between
0, 0.33, and 0.5. The test question was a singular causation test query referring to a specific
mouse from the treatment group. Subjects were asked to indicate on a slider how confident
they were that it was the treatment with the chemical substance that caused this mouse to
express the gene (from “very certain that it was not the chemical” to “very certain that it
was the chemical”).

Since the target cause has a causal strength of wc = 1.0 (i.e., it is always sufficiently
strong to cause the effect) in all conditions, the standard model predicts that subjects should
be maximally confident that the chemical treatment was the singular cause of the target
mouse’s expressing the gene, P (c → e|c, e) = 1.0 (see Fig. 3a). By contrast, we predicted
that subjects would incorporate temporal assumptions about when the alternative causes
produced their effects, and that this would lead to lower singular causation ratings if the
observed strength of the alternative causes (wa) increases. We assumed that in our scenario
about factors triggering the expression of a gene, it would be plausible to assume that the
alternative causes of gene expression generated their effects a long time before the biologists
conducted their study and treated some mice with the chemical substance. Under this
assumption one would have to conclude that the alternative causes preempted the target
cause in all cases in which the target and alternative causes were simultaneously sufficiently
strong to produce the effect. We modeled this assumption by setting the α parameter of the
generalized model to 1.0. The predictions of our generalized model are shown in Fig. 3b. We
found that subjects’ mean singular causation judgments closely traced the predictions of the
generalized model (see Fig. 3c). Different additional control questions further corroborated
the hypothesis that subjects indeed incorporated temporal assumptions in their singular
causation judgments. For example, we found that subjects assumed that the alternative
causes had already exerted their influence before the target cause was introduced. We could
also rule out that the observed decrease in the P (c→ e|c) ratings resulted from increasing
uncertainty about the existence of a general causal relationship between C and E. This
was a possibility because lower values of ∆P (which measures the degree of contingency)
imply less support for the existence of a general causal link between the factors (Griffiths
& Tenenbaum, 2005; Meder, Mayrhofer, & Waldmann, 2014). To address this problem, we
used sample sizes for our contingency data that were large enough so that the posterior
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probability of the existence of a general causal link between C and E, as computed by the
structure induction model (Meder et al., 2014), was still close to 1.0 even for the data set with
the lowest contingency. Moreover, we asked subjects how strongly they believed that the
chemical can generally cause the expression of the gene (which is a general causal structure
query). Subjects reported high and almost identical confidence levels in all conditions.

The role of temporal relations

While our experiments in Stephan and Waldmann (2018) demonstrated that reason-
ers go beyond general causal strength knowledge and also incorporate temporal information
when assessing singular causation relations, an open question was what exactly the rele-
vant temporal factors are and how they need to be combined to determine the probability
of causal preemption. In Stephan et al. (2020) we addressed this question by providing a
formalization of our model’s α parameter.

Onset times

One relevant temporal factor we identified is the onset time difference between the
competing causes. For example, in the philosophical preemption scenario about the two
rock throwers, our intuition that Billy’s throwing was preempted by Suzy’s is suggested by
the information that Suzy’s throwing occurred earlier than Billy’s. Formally, if a target
effect e could have been caused by either the target cause c or by one potential alternative
cause a, the probability that c was preempted by a tends to be higher if a happened earlier
than c. The onset time difference of two competing causes can be denoted ∆t = ta − tc,
where ta and tc denote a’s and c’s onset times, respectively.

Causal latency

If two potential causes c and a are sufficiently strong to produce e but one occurred
earlier, it is still not certain that the earlier cause actually preempted the other. A second
temporal dimension that needs to be considered is the causes’ causal latency, i.e., the time
it takes the causes to generate their effect. In the philosophical preemption scenario about
Billy and Suzy, causal latency information is conveyed by saying that both protagonists are
throwing their rocks with identical velocity. Thus, in this scenario identical causal latencies
are assumed and the causes’ preemptive relation depends only on their onset time difference.
Generally, however, a potential cause occurring earlier than its competitor can still fail to
preempt its competitor if the competing cause acts quicker than the target cause.

The causal latency of a cause C can formally be denoted as tC→E . Following previous
research on general causal structure learning in dynamic contexts (e.g., Bramley, Gersten-
berg, Mayrhofer, & Lagnado, 2018) and queueing theory (Shortle, Thompson, Gross, &
Harris, 2018), we used gamma distributions to model causal latency. The gamma distri-
bution generalizes the exponential distribution and is defined by two parameters, a shape
parameter κ > 0 and a scale parameter θ > 0. A gamma distribution’s expected value
is given by κ · θ and its variance by κ · θ2. A cause’s latency can be induced based on
multiple observations tracking the onset differences between cause and effect. For example,
in a context shielded from the influence of alternative causes, the expected value of a causal
latency distribution can be estimated by the average of the observed cause-effect delays.
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Figure 4

Illustration of how the causes’ strengths and their causal latencies determine the
predictions of the generalized power PC model of singular causation judgments.

A

C

E

A

C

E

A

C

E

A

C

E

A

C

E

0 2000 4000 60000.
00

00

tC→  E :  κ = 10 θ = 100

time

D
en

si
ty

0 2000 4000 60000.
00

00

tA→  E :  κ = 30 θ = 100

time

D
en

si
ty

Note. The black squares shown in the graphs of the last row show participants’ mean singular
causation ratings (error bars denote 95% CIs) as measured in Experiment 2 in Stephan et
al. (2020). The red points show the model predictions for the tested conditions.

Having identified and formalized these two temporal dimensions we showed in
Stephan et al. (2020) that α, i.e., the probability that the target cause c was pre-
empted by the competing cause a if both happen to be sufficiently strong to produce
e, corresponds to the probability that the value of the target cause’s latency is greater
than the sum of the causes’ onset time difference and the alternative cause’s latency:
α = P (ta→e + ∆t < tc→e|e, c, a). We also showed that P (ta→e + ∆t < tc→e|e, c, a) can
be approximated by a simple Monte Carlo (MC) algorithm that randomly draws causal
latency samples from each cause’s latency distribution.

An illustration showing how causal latency information determines the probability
that c was the singular cause of e according to our generalized power PC model of singular
causation judgments, and how causal latency information is integrated with causal strength
information, is given in Fig. 4. The figure shows five common-effect causal structures that
differ with respect to the causal latency distributions assigned to C and A. For example,
in the first causal structure C’s causal latency distribution has a much smaller expected
value than A’s and the two distributions almost do not overlap. Neglecting onset time
differences (∆t = 0), the resulting value of α is 0.001 in this case. In Fig. 4 the value of α
increases from the first to fifths structure because the causal latency distribution of A shifts
to the left while the causal latency of C shifts to the right. In the third causal structure,
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for example, both causes’ latencies follow the same gamma distribution. In this case the
resulting α value is 0.5 because the chance that a randomly sampled single value from C’s
causal latency distribution is higher than a randomly sampled single value from A’s causal
latency distribution is fifty percent when the distributions fully overlap.

The five graphs in the last row of Fig. 4 show how the value of α influences the pre-
dictions for P (c→ e|c, a, e) made by the generalized power PC model of singular causation
judgments for different combinations of causal strength values. In each graph, the causal
strength of the target cause C is shown on the x-axis and different strengths of the alter-
native cause are represented by the different red lines. Comparing the five graphs it can be
seen that increasing values of α tend to reduce the probability of a singular causal link be-
tween c and e. It can also be seen that the extent to which alpha diminishes P (c→ e|c, a, e)
tends to increase with increasing strengths of the alternative cause A. In the first graph, in
which α is close to 0, the predictions of the generalized model correspond to those of the
standard model.

In Stephan et al. (2020) we conducted several experiments testing the validity of
the generalized model. The influence of causal latency information on singular causation
judgments was tested in Experiment 2. A demo video of one of the study conditions can be
found at https://osf.io/g6p72/. We presented subjects with a fictitious scenario about
the emergency alarm system of a medieval kingdom. The scenario introduced soldiers
located on two watchtowers, the Western and the Eastern tower, whose task it was to look
out for invading barbarians and to send out carrier pigeons to alarm the King’s palace in
case of an invasion. In two separate learning phases, subjects first learned about the flight
durations of the two watchtowers’ carrier pigeons by observing each tower multiple times.
The presented flight durations followed a variant of the gamma distribution. The different
pairs of latency distributions that were used are shown in Fig. 4. They were manipulated
between subjects. Since we were interested in the role of causal latency information on
singular causation judgments in this experiment, we held the causal strengths of the two
causes constant at wc = wa = 1.0. Thus, subjects observed that all carrier pigeons
eventually arrived at the palace. In the test phase, subjects were asked to imagine a day
on which both watch towers simultaneously sent out a pigeon and on which an alarm later
occurred in the palace. We then asked them how strongly they believed that the alarm was
caused by the Western [or Eastern] tower. The graphs in Fig. 4 show that if the potential
causes, the pigeons, have causal strengths of wc = wa = 1.0, the generalized model predicts
that subjects’ singular causation judgments should corresponds to P (c→ e|c, a, e) = 1−α
(indicated by the red point in each graph). The generalized model thus predicts a negative
linear trend across the different test cases. The standard model, by contrast, always predicts
that P (c→ e|c, a, e) = 1.0 if wc = wa = 1.0.

Subjects’ mean singular causation ratings are shown as black squares (error bars
denote 95% CIs) in Fig. 4. As can be seen, subjects’ singular causation judgments fol-
lowed the negative trend predicted by the generalized model, although ratings tended to be
slightly less extreme than predicted by the model. In this experiment we also found that
predictions that were based solely on the expected values of the respective latency distri-
butions accounted less well for subjects’ ratings than predictions based on the full gamma
distributions. This finding indicates that subjects’ singular causation ratings were not only
sensitive to the expected values of the latency distributions but also to their variance. This

https://osf.io/g6p72/
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experiment successfully demonstrates that reasoners incorporate and integrate information
about causal latency in their singular causation judgments as predicted by the generalized
model. In a further experiment in Stephan et al. (2020) we found that subjects correctly
incorporate onset time difference (∆t). Singular causation judgments thus were confirmed
to be sensitive to both temporal dimensions considered by the generalized model. In a fi-
nal study, we then combined different causal latency distributions with probabilistic causal
strengths of the competing causes. Since a crucial prediction of our model is that causal
strength and temporal information should interact, this study provided an in important
further test of the model. Subjects’ singular causation ratings were again predicted well by
the generalized model.

Incorporating mechanism information

A further cue helping in the assessment of singular causation relations that has been
discussed both in philosophy and psychology is knowledge about mechanisms. (Cartwright,
2017, p. 8) has, for example, included the “presence of expectable intermediate steps (me-
diator variables)” in a list of factors indicating singular causation. Different psychological
studies have shown that people make use of mechanism information when asked to deter-
mine the singular cause of an effect (e.g., Ahn et al., 1995; Johnson & Keil, 2018). For
example, in a recent study Johnson and Keil (2018) presented their participants with either
generic (e.g., “Eating polar bear liver causes a person to become dizzy”) or singular (e.g.,
“Eating polar bear liver caused Bill to become dizzy”) causation statements and asked them
to select the type of information that would be most relevant to determine if the presented
statement was true. Subjects could choose between anecdotal, statistical/ covariational,
and mechanistic information. Johnson and Keil (2018) found that subjects preferred mech-
anistic information over statistical information when asked to evaluate singular causation
claims, while the reverse was found when subjects evaluated general causation statements.

We have recently extended our generalized power PC model of singular causation
judgments to provide a formal answer to the question of why mechanism information is
a relevant in this task (Stephan & Waldmann, under review). Under the causal Bayes
net framework, causal mechanisms are modeled as intermediate nodes within causal chains
(Danks, 2005) (see also Stephan, Pighin, Tentori, & Waldmann, in press). The original
version of our generalized model was applied to the basic common-effect causal model
shown in Fig. 1a with two causes converging on an effect. In Stephan and Waldmann (under
review) we applied the model to more complex causal structures that include intermediate
mechanism nodes. One such structure containing mechanism nodes is shown in Fig. 1b.
This model can be thought of as an augmented version of the basic common-effect model
in which the mechanisms underlying the direct causal arrows connecting C and A with E
have been explicitly represented. In this augmented causal model, the original strength
parameters wc and wa can now be re-represented as the products of single link strengths of
the two paths: wc = wcmc · wmce and wa = wama · wmae. Similarly, the probability that c
is the singular cause of e corresponds to the probability c caused mC times the probability
that mC caused e: P (c → e|c,mc, e) = P (c → mC |c,mc, e) · P (mC → e|c,mC , e). The
two equations allow us to see under which conditions the observation that a target cause’s
mechanism is active (MC = 1 or mC) should increase a reasoner’s confidence that the
target cause c is the singular cause of the target effect e. Since the strength wmce of the
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link connecting MC to E will be higher than the strength wc of the overall (unelaborated)
causal path from C to E for wc < 1.0, the probability that mC caused e will on average
be higher than the probability that c caused e in situations in which MC is unobserved:
P (mC → e|mC , e) > P (c → e|c, e). Observing mC will then lead to an increase in the
probability that c is the singular cause of e if we can be certain that mC was caused by
c. One situation in which we can be certain that c caused mC is when C is a necessary
cause of its mechanism variable MC . P (c→ mC |c,mC) is 1.0 in this case and, as a result,
P (c→ e|c,mC , e) reduces to P (mC → e|c,mC , e).

Learning about the absence instead of the presence of mechanism variables may
also help in assessing whether c caused e. For example, if C can cause E only via MC and
MC is discovered to be absent in a singular case, c can be ruled out as the singular cause
of e. Conditionalizing on situations in which MC = 0, wc takes on a value of 0 and, as
result, P (c→ e|c,¬mC , e) also equals 0. By contrast, if we discover in a situation that the
alternative cause’s mechanism variable MA is absent, then we can be certain that c is the
singular cause of e. In this case wa = 0 and Equation 2 reduces to P (c→ e|c,¬mA, e) =
wc
wc

= 1.0.
The previous analysis showed that causal mechanism information helps with assess-

ing singular causation relations because it allows us to insert more specific values for the
causal strength parameters. In Stephan and Waldmann (under review) we showed that
causal mechanism information also helps to specify the temporal relations between the po-
tential causes of a target effect. This is necessary when the causes can alternatively produce
their effect via different possible mechanism paths. For example, in the shooting scenario
one might consider the different ways via which being hit by a bullet can cause people to
die. The bullet might either kill somebody by hurting their heart or their aorta. These
different possible mechanism paths are not only associated with different causal strengths,
but also with different causal latencies. Bullet’s hurting the heart not only kill more reliably
than bullets destroying the aorta, they also kill much quicker.

A causal structure in which the causes C and A generate their common effect E via
different possible mechanism paths is shown in Fig. 1c. The gamma distributions attached
to the final causal links connecting the different mechanism nodes to the effect illustrate
that the links are assumed to differ in their causal latencies. In particular, C and A each
have one fast and one slow causal path. For C the fast causal path is the one via MC1
and for A the fast causal path is the one via MA1. These different latency distributions
assigned to the different mechanism paths imply that the α value will change depending on
which mechanism components of the target and the alternative cause are observed to be
active on a singular occasion. For example, if both potential causes activate the mechanism
components that have the same causal latency (e.g., MC1 = 1 and MA1 = 1), then α
would be 0.5. By contrast, in a situation in which C activates MC1 and A activates its
slower mechanism variable MA2, then α would take on a small value. In the reverse case, α
would take on a high value.

An illustration of the scenario we used in the first experiment in Stephan and Wald-
mann (under review) is shown in Fig. 5. Subjects learned about a kingdom in which one
castle was located in the southwest and another one in the southeast, and in which the
King’s palace was located in the north. The scenario was about the medical emergency
system of the kingdom. Subjects learned that the only healer of the kingdom was living in
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Figure 5

Illustration of the scenario used in Experiment 1 in Stephan and Waldmann (under
review).

Western Castle Eastern Castle

King’s Palace

Eastern 
Intermediate
Station

Western 
Intermediate
Station

the King’s palace, and that the castles, to call the healer in case of a medical emergency,
had to send out carrier pigeons. Subjects learned that the pigeons could not fly the whole
distance to the palace, which is why each castle had installed intermediate stations. To
establish different possible mechanism paths, two possibilities were introduced of how in-
coming emergency signals could be forwarded to the palace at these intermediate stations.
One possibility was telegraph towers and the other was pony riders stationed next to the
telegraph towers (see Fig. 5). The pony riders were described as back-ups ensuring that
emergency signals could be forwarded if a telegraph tower was blacked out. The routes the
pony riders had to take on their way to the palace were described as dangerous and it was
mentioned that pony riders might get lost on their way to the palace. We hypothesized
that subjects would assume that telegraph towers have a higher causal strength as well as
a shorter causal latency than pony riders. Subjects were informed that they will observe
what happened on different days and that the different events will be illustrated using dif-
ferent event icons (see Fig. 5). Subjects were informed that, for each day, they will be asked
to indicate how strongly they believed that the observed alarm in the King’s palace had
been caused by the Western [Eastern] castle on that day. A demo video can be found at
https://osf.io/ycv8u/.

Subjects were asked to evaluate 28 different singular observations that were com-
patible with the instructed causal structure. These test cases could be grouped into five
different categories. For example, one category consisted of all cases in which none of the
alternative cause’s mechanism components was active. A subset of nine test cases from the
five different categories is shown on the x-axes in Fig. 6 in the form of simplified neuron
diagrams. The bottom nodes of these neuron diagrams marked by asterisks represent the

https://osf.io/ycv8u/
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Figure 6

Model predictions and results for a subset of test cases used in Experiment 1 in
Stephan and Waldmann (under review).
a) Standard power PC model of causal attribution

01 07 08 09 14 20 21 22 28

c) Human singular causation judgments

01 07 08 09 14 20 21 22 2801 07 08 09 14 20 21 22 28

b) Generalized power PC model of causal attribution

Legend:

= active
= inactive
= unobserved
= strong and 
fast mechanism 
component

Note. Asterisks in the neuron diagrams refer to the target cause.

target cause to which the singular causation test queries referred. The last four test cases
(cases 20, 21, 22, and 28 in the original study) mirror the first four shown test cases. The
middle case (case 14 in the original study) is a “symmetric” test case because the same
event types are instantiated for the target and the alternative cause. The graphs in Fig. 6
show the predictions made by standard model (a) and the generalized model (b). A list
with the exact parameter values on which the prediction were based can be accessed at
https://osf.io/8nz37/. For the first four test cases both models make similar qualitative
predictions, but the predictions differ for the remaining test cases. For the symmetrical
test case, for example, the standard model predicts that subjects should be quite confident
that the target cause was the singular cause of the effect. In this test case the target cause
activates its strong and fast mechanism path. As we have seen, the standard model predicts
high values for P (c→ e|c, e) whenever the causal strength of the target cause is high. The
generalized model, by contrast, predicts that reasoners should be uncertain in this case be-
cause the alternative cause also activates its strong and fast mechanism path, and thus has
a fifty percent probability of successfully preempting the target cause. A further notable
difference between the models is the contrast between the predictions for the first and the
last four test cases. Since the last four test case mirror the first ones, the generalized model
predicts that singular causation judgments for the last four cases should mirror those for
the first four cases. For example, the difference between test case 09 and 20 is that target
and alternative cause have switched. The generalized model predicts that P (c→ e|c, e) for
test case 20 corresponds to 1−P (c→ e|c, e) for test case 09. The standard model does not
make this prediction. As the standard model solely focusing on causal strength and neglects
temporal information, it predicts an advantage of the target cause in all these cases.

The mean singular causation for the nine test cases that our subjects provided are
shown in Fig. 5c. We have found that their ratings (including those given for the remaining

https://osf.io/8nz37/


COVARIATION TIME AND MECHANISMS IN SINGULAR CAUSATION 15

test cases) were predicted best by the generalized model. By contrast, the standard model
as well as further alternative models that we included in our analyses failed to account for
subjects’ singular causation ratings. In sum, the results of this experiment demonstrate
that people use and integrate mechanism information in an elaborate way when answering
singular causation queries. The results of this study show that reasoners seem to understand
that mechanism information helps with assessing singular causation relations because it
allows us to insert more specific values for the strength and temporal parameters that are
relevant for determining whether a target cause actually produced a target effect.

In Stephan and Waldmann (under review) we not only provided a formal account
showing why mechanism information is helpful for assessing singular causation relations, but
also used our model to identify situations in which mechanism information is less useful.
One factor diminishing the value of mechanism information is whether a mechanism path
can also be activated by alternative causes. Observing the presence of a mechanism variable
is more helpful for singular causation judgments when the target cause is the only cause that
can activate this mechanism variable. A second factor diminishing the utility of mechanism
information concerns the way in which the overall strength of the target cause (wc) with
respect to the target effect is distributed across the different components of its mechanism
path. We have used our model to show that, given constant levels of wc = wcmc · wmce

(see Fig. 1b), the observation that the mechanism variable is active in a singular cause
(MC = 1) should lead to a stronger increase in the probability that c caused e when wmce
is the stronger component of the product wc = wcmc · wmce than when it is the weaker
component. We conducted two studies testing whether lay people understand the factors
that reduce the utility of mechanism information. The studies showed that a subset of
reasoners have a tentative understanding of the relevance of these factors. However, we
also found that many people generally rely on the heuristic that mechanism information is
always helpful.

Summary, open questions, and directions for future research

The generalized power PC model of singular causation judgments makes explicit
how different types of information can be combined to determine how strongly a reasoner
should believe that an observed effect event was actually caused by a potential target cause.
Causal strength information is important for the assessment of singular causation relations
because causes that reliably produce their effects are more likely to be successful than causes
that only rarely generate an effect. Covariational information also allows us to learn about
the prevalence and strength of alternative causes. For example, if an effect is known to
occur only very rarely in the absence of the target cause, this means that alternative causes
are sparse or weak. If alternative causes are sparse, then we should be more confident
that an observed co-occurrence of target cause and effect was actually causal rather than
coincidental, even if the target cause is generally relatively weak. A well-known example is
the relation between smoking and lung cancer. Although smoking is a rather weak cause of
lung cancer even in chain smokers, the probability that a singular instance of lung cancer in
a heavy chain smoker was caused by that person’s smoking is relatively high. The reason for
this divergence is that lung cancer is extremely rare in people who are not chain smokers.
The generalized power PC model of singular causation judgments provides a formal account
of these intuitions.
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Knowledge about the general strengths of causes is not sufficient to determine sin-
gular causation relations. Philosophical examples of redundant causation show that even
deterministic general causes can fail to cause the effect in a specific situation if they are
preempted by competing alternative causes. Philosophical process theories of causality at-
tempt to solve the problem of causal preemption by referring to the transfer of energy or the
exchange of conserved quantities between cause and effect (e.g., Dowe, 1992, 2007) (see also
Wolff, 2007; Wolff, Barbey, & Hausknecht, 2010; Wolff & Thorstad, 2017). Counterfactual
accounts of singular causation (e.g., Halpern & Hitchcock, 2015; Halpern & Pearl, 2005)
aim to solve the problem of causal preemption by defining causality as causal dependence
of the effect on the cause by counterfactually holding constant suitable causal factors (see
also Hitchcock, 2009).

Our model implements a different solution to the problem of preemption. People
often will rely on temporal information to determine the preemptive relation between po-
tential causes of an effect. We have identified two types of temporal information that help
with determining causal preemption: onset times and causal latency. Our model makes
explicit how these factors can be integrated and combined with causal strength knowledge
to assess whether a cause was preempted by a potential alternative cause. Our experiments
support the assumptions of the model.

In research on causal reasoning, causal mechanism and covariation-based theories
have for a long time been regarded as competing alternative accounts of causal inference.
But in fact, both frameworks are compatible with each other, as has been shown, for ex-
ample, by Danks (2005). Both types of theories traditionally have been applied to explain
different tasks of causal inference, though. Covariation theories have mostly been used to
explain how people infer general causation relationships (e.g. Cheng, 1997; Gopnik et al.,
2004; Griffiths & Tenenbaum, 2005; Novick & Cheng, 2004), while mechanism theories have
focused on explaining singular causation judgments (e.g., Ahn et al., 1995). According to
the causal Bayes net framework, mechanisms can be understood as a sequence of medi-
ating variables within causal networks, and knowledge about them can be acquired based
on covariational information. We have shown that mechanism knowledge can constrain
inferences and thereby help with determining the singular cause of an effect.

What has been missing in the literature is a formal explanation of why mechanism
information can be useful to assess singular causation, and when its contribution is limited.
In Stephan and Waldmann (under review) we used the generalized power PC model of
singular causation judgments to provide a formal analysis along with empirical evidence
demonstrating the value of the model.

Despite the success of the generalized model there are still important open empirical
and theoretical questions. So far we have only tested relatively simple scenarios. For
example, in all experiments in Stephan et al. (2020) and Stephan and Waldmann (under
review), we limited the causal model to two potential causes of a single effect. Moreover,
although we studied situations with unobserved alternative causes (A) in Stephan and
Waldmann (2018), in all experiments that studied the role of temporal relations (Stephan
et al., 2020), the status of all relevant causes as present or absent was explicitly mentioned.
Subjects thus never had to incorporate base rate information. In everyday life reasoners
will only very rarely be in a situation in which the number of potential causes is so small.
It would therefore be interesting to assess in future studies how well participants perform



COVARIATION TIME AND MECHANISMS IN SINGULAR CAUSATION 17

in more complex situations. We suspect that subjects’ performance would decrease rather
quickly with increasing complexity.

Another interesting question is how subjects’ singular causation judgments are gen-
erated in situations in which there are unknown background causes of an effect. This is a
common type of situation we encounter in our everyday lives. In such situations it appears
to be at first sight impossible to conclude confidently that the target cause actually produced
the target effect because the possibility of preemption by an unobservable cause cannot be
ruled out. However, people can nevertheless make rational inferences given suitable back-
ground assumptions. As has been shown by Cheng (1997), the influence of unobserved
background causes can be estimated by the probability of the effect in the absence of the
target cause: P (e|¬c) = ba ·wa if the background causes are assumed to be generative, inde-
pendent, and not interacting with the target cause. The more difficult problem is to judge
potential preemptive relations between the target and the unobserved alternative causes.
How can the value of our model’s α parameter be specified in this kind of situation? One
possibility is that reasoners in such cases simply rely on certain default values for α. For
example, setting α to 0.5 in such a case would mean that we remain uncertain about the
preemptive relation between the potential causes. As a conservative solution, α could be
set to 1.0, which would reflect the assumption that the target cause is preempted whenever
the target and at least one of the alternative causes are simultaneously sufficient for the
effect. In this case, the resulting value for P (c→ e|c, e) can be thought of as a measure of
the lower boundary of a range within which the true probability of c having caused e lies.

Alternatively, reasoners may have in some cases more specific intuitions about pre-
emptive relations (Stephan et al., 2020). In contexts with unobserved background causes,
temporal information can be extracted from the observable background rate of the effect.
The background rate can be modeled using exponential functions (cf. Bramley et al., 2018).
In situations in which the target cause and the unobserved background causes are all present,
the distribution of the effect rate is a mixture in which the gamma distribution that repre-
sents the causal latency of the target cause is superimposed on the exponential distribution
of the unobserved background causes. When the unobserved background cause is absent,
then only the gamma distribution of the target cause can be observed. Thus, if the rate
in which the effect occurs in the presence of the target cause is much higher than in its
absence, this is an indicator that the target cause has a very short causal latency. A short
causal latency makes it less likely than a long latency that the target cause is preempted
by a background cause (see Lagnado & Speekenbrink, 2010, for supporting evidence). One
interesting future study thus would be to test if reasoners report higher degrees of confi-
dence that c caused e if they have learned that the presence of the target cause leads to a
steep increase in the effect’s rate than if they have observed that the effect rate only mildly
increases in the presence of the target cause.

Another limitation of the present studies is that we have only tested static test
situations, that is, situations in which subjects receive information about the status of
events in a specific case rather than having observed the unfolding of events. While we are
frequently asked to make judgments about events in the past, we also often find ourselves
in situations in which we witness events developing in front of our eyes. In such cases, we
will directly experience the relevant temporal relations, which may either be consistent or
inconsistent with our expectations. For example, if we have learned in the past that a cause
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typically generates the effect very quickly, but then observe a long delay between the events
it seems reasonable to be cautious to infer that the two events were causally linked.

Another limitation is our focus on binary events in both the model and the sce-
narios we tested. Research on forensic epidemiology (see Freeman & Zeegers, 2016, for an
overview) has, for example, often studied cases that involve continuous variables; statistical
measures of culpability involving continuous variables have been suggested. For example,
one could ask whether a plaintiff’s disease has actually resulted from a particular quantita-
tive amount of toxic exposure. It would be interesting to use these models as an inspiration
for an extension of the generalized model to also capture intuitions about singular causation
involving continuous variables.

Finally, there are further cues to singular causation that have been proposed that
still need to be integrated into our model. For example, one additional cue suggested by
Cartwright (2015; 2017) is information about the presence of “required support factors”,
by which she means enabling conditions that are necessary for a cause to produce the
effect. Another cue currently not considered by our model is knowledge about the absence
of preventive or disabling factors. These concepts can be easily integrated within our
framework. Enabling factors can, for example, be represented as additional factors that
interact with the target cause (Novick & Cheng, 2004). Disablers can either be explicitly
represented as inhibitory causes or can be implicitly encoded as affecting causal strength
(Stephan et al., in press).

Despite the considerable process in formalizing singular causation in the past years,
more needs to be done to develop an account that also addresses more complex cases. It
seems important to transition in future research from laboratory studies to analyses of real-
world cases, for example in law or medicine, to obtain a better impression of the strengths
and shortcomings of the generalized model and develop it further.
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