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Abstract

Queries about singular causation face two problems: It needs
to be decided whether the two observed events are instanti-
ations of a generic cause-effect relation. Second, causation
needs to be distinguished from coincidence. We propose a
computational model that addresses both questions. It accesses
generic causal knowledge either on the individual or the group
level. Moreover, the model considers the possibility of a co-
incidence by adopting Cheng and Novick’s (2005) power PC
measure of causal responsibility. This measure delivers the
conditional probability that a cause is causally responsible for
an effect given that both events have occurred. To take uncer-
tainty about both the causal structure and the parameters into
account we embedded the causal responsibility measure within
the structure induction (SI) model developed by Meder et al.
(2014). We report the results of three experiments that show
that the SI model better captures the data than the power PC
model.
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Imagine that you wake up one morning and recognize that
you are haunted by a mean twinge in your head. You also
know that you drank too many glasses of wine last night.
Now the question arises whether your behavior last evening
is causally responsible for your headache this morning. This
causal query targets a singular instance in which one event
at a specific spatio-temporal location may have caused an-
other event that followed. The general problem with singular
causal queries is that a co-occurrence of the particular events
by itself does not guarantee causation. It may just be a coin-
cidence. How confident can you be that this singular case of
having drunk wine is the cause of your headache?

One important source that should influence our confidence
is past knowledge about the contingency between drinking
wine and headache. This is generic causal knowledge. It
could either refer to cases of presence and absence of drinking
and headache in an observed sample of people, or, even better
with respect to the example given above, to a sample of these
events in your life. The contingency in your life provides the
best estimate for a generic causal relation between drinking
and headache in your body.

However, knowing that there is a generic causal relation
does not necessarily imply that a singular co-occurrence of
the target events is causal. Unless the generic relation is deter-
ministic, the co-occurrence may still be a coincidence. Thus,
our causal judgment about singular causation must take this
possibility into account.

Psychological research on causal inference adheres to two
different theoretical frameworks to characterize the reasoning
processes (see Waldmann, in press; Waldmann & Hagmayer,

2013; Waldmann & Mayrhofer, in press). One approach as-
sumes that causal knowledge is grounded in knowledge about
causal dependencies gleaned from observed contingencies.
According to this approach, causes are difference makers that
raise or lower the probability of an effect (e.g., Cheng, 1997;
Griffiths & Tenenbaum, 2005; Meder, Mayrhofer, & Wald-
mann, 2014).

A different approach assumes that causal knowledge is
based on a search for mechanisms and processes linking
causes and effects (e.g., Ahn, Kalish, Medin, & Gelman,
1995). The two approaches need not be incompatible. Of-
ten mechanism knowledge is based on generic information
about causal chains. Specific mechanisms are then simply
instantiations of generic chain knowledge.

Mechanism knowledge is often not available. But even in
cases in which information about intervening variables of a
causal chain is in fact accessible, the question arises again
how we should distinguish causation from coincidence. The
joint occurrence of all elements of a chain certainly makes
the possibility of a coincidence extremely unlikely, but it is
in principle still a possibility. Thus, the general problem of
how we should apply generic knowledge to singular cases still
needs to be addressed, regardless of whether we solve this
problem for a direct causal link or a causal chain.

In the present paper, we investigated how people exploit
generic causal information when estimating singular causa-
tion. We here focus on cases for which it is known that both
the cause event and the effect event are present, but the ques-
tion needs to be answered how much confidence we can have
that the co-occurrence is due to causation and not a coinci-
dence.

Cheng and Novick (2005) have proposed a measure of
causal responsibility that helps to answer this question. The
measure is based on the assumptions of power PC the-
ory (Cheng, 1997). It delivers the conditional probability
that a cause event c¢ is causally responsible for an effect
event e given that a reasoner knows that both have occurred,
P(c — elc,e). We think that this quantity underlies judgments
of singular causation when only generic information is avail-
able. One shortcoming of this measure is that it does not in-
corporate the reasoners’ uncertainty concerning the underly-
ing causal structure and the corresponding parameters (see
Griffiths & Tenenbaum, 2005). Therefore, Holyoak, Lee, and
Lu (2010) have proposed a causal responsibility measure that
also takes parameter uncertainty into account. We go one step
further here, and test a model of causal responsibility that is
sensitive to both parameter uncertainty and uncertainty about
the existence of the causal link between factors C and E. This



model is based on the structure induction (SI) model of di-
agnostic reasoning developed by Meder et al. (2014). We
present three experiments in which we empirically tested the
power PC theory of causal responsibility against our SI model
of singular causation.

The Power PC Model of Causal Responsibility

Causal power in Cheng’s (1997) theory can be understood as
the probability that the target cause brings about the effect
in the absence of all alternative causes of the effect. Fig. 1
(right) shows the basic causal model assumed by the power
PC theory. The default assumption is that the target effect £
can be independently produced by either the observed cause
C with causal power (or strength) w. or by alternative unob-
served causes A with the power (or strength) w,. It is further
assumed that C and A occur independently and do not inter-
act. Thus, C and A combine through a noisy-OR gate (see
Griffiths & Tenenbaum, 2005; Pearl, 1988).

Based on the power PC framework, Cheng and Novick
(2005) developed a measure of causal responsibility. For-
mally, causal responsibility is the proportion of occurrences
of the effect due to the target cause C. Cheng and Novick
(2005) presented formalizations of different kinds of causal
responsibility. Here we are interested in how to answer the
question whether an observed event ¢ was causally respon-
sible for an observed event e in cases in which both ¢ and e
were observed. Under the default assumptions of power PC
theory, Cheng and Novick (2005) showed that this quantity is
given by
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where P(c) equals b, in Fig. 1, which denotes the base rate of
C, and P(c,e) denotes the joint probability of cause and ef-
fect. Since P(c,e) can be rewritten as the product of P(c) and
the predictive probability P(e|c), causal responsibility given
the joint occurrence of ¢ and e equals the causal power of ¢
divided by the predictive probability of e given c.

The power PC theory only considers the model S depicted
in Fig. 1 (right) and uses maximum likelihood estimates for
the parameters. It does not take into account uncertainty
about the size of the parameters, nor about the causal struc-
ture (see Griffiths & Tenenbaum, 2005). Thus, it does not
consider the possibility, depicted as Sy in Fig. 1, that there is
no causal arrow from C to E, meaning that all co-occurrences
are due to coincidence.

A consequence of maximum likelihood estimates is that
the theory predicts maximal values of causal responsibil-
ity for any contingency where the target cause is necessary
(i.e., a table with an empty C cell) no matter how rarely co-
occurrences of cause and effect are. Consider the two exam-
ples of such cases depicted in Fig. 2. In the left table, the
effect has only occurred four times when the cause event was
present. In contrast, in the right table the effect occurred six-
teen times when the cause event was present. By applying the

equations, one can see that the prediction of maximal respon-
sibility is a consequence of w, being equal to P(e|c) for any
table with an empty C cell.
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Figure 1: The two causal structures in the structure induction
model. In Sy, no causal relationship exists between C and E.
In Sy, C and E are causally connected. Node A represents
unobservable background causes of E. The parameter b, de-
notes the base rate of the cause, and w, and w, the causal
powers of C and A, respectively.

The Structure Induction Model of Singular
Causation

Contrary to the power PC theory, the structure induction (SI)
model assumes that reasoners might be uncertain about both
the underlying causal model and the parameters (Meder et
al., 2014). Originally, the model was developed to model di-
agnostic inferences. Here, instead, we use the framework to
model judgments about singular causation. Our key claim is
that subjects assess singular causation by estimating causal
responsibility within the SI model.

Causal queries about simple causal models with a single
cause and a single effect are modelled by the SI theory as a
Bayesian inference problem over the two mutually exclusive
causal structures shown in Fig. 1 (see also Griffiths & Tenen-
baum, 2005). The model formalizes the assumption that rea-
soners are uncertain about which of the two models underlies
the data; they are also uncertain about the size of the param-
eters. We will briefly summarize the different computational
steps of the model.

Parameter Estimation

In light of the possibility that either Sy or §; might underlie
the data, the model estimates the base rate and power param-
eters b, w., and w,, separately for each causal structure (see
Fig. 1). To express uncertainty, distributions of the param-
eters, rather than maximum likelihood point estimates, are
inferred. According to Bayes’ rule, the posterior probability
distributions for the parameters of each model given the data,
P(w|D), is proportional to the likelihood of the data given the
set of parameters w, weighted by the prior probability of the
structure:

P(w|D) o< P(D|w) - P(w) 2)

P(D|w) denotes the likelihood of the data given the param-
eter values for b., w., and w,. P(w) represents the prior joint



probability of the parameters which we set to flat, uninforma-
tive Beta(1, 1) distributions.

Structure Estimation

The SI model separately derives the posterior probabilities
for each causal structure. Applying Bayes’ rule, the posterior
probability for a causal structure is proportional to the likeli-
hood of the data given the causal structure, weighted by the
structure’s prior probability:

P(8i|D) o< P(DIS;) - P(Si) 3)

P(D]S;) denotes the likelihood of the data given a partic-
ular structure, which is the integral over the likelihood func-
tion of the parameter values under the particular structure.
P(S;) represents the prior probability of the structures. The
model initially assumes that both structures have equal pri-
ors, i.e., P(S;) = 1/2. When data are available, the posterior
for a causal structure varies systematically with the observed
contingency: the higher the contingency, the more likely S
becomes.

Causal Responsibility for Each Structure

Having estimated the parameters and the posteriors of the
structures, the model computes causal responsibility sepa-
rately for each parametrized structure using Equation 1. Un-
der a noisy OR-parametrization Equation 1 can be rewritten
as
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According to Sp, there is no causal connection between C
and E, and any co-occurrences of ¢ and e are coincidences.
Hence, P(c — e|c,e) = 0 for Sp. For S;, Equation 4 is ap-
plied. The estimation of causal responsibility is then derived
by integrating over the parameter values.

Deriving a Single Value

The final output of the model is a single estimate of causal
responsibility through integrating out the causal structures by
summing over the derived values of P(c — ¢|c,e;S;) for each
structure weighted by each structure’s posterior probability:

P(c — e|c,e;D) :ZP(C—>e|c,e;S,-) -P(S;|D).  (5)

The incorporation of structure and parameter uncertainty
by the SI model leads to systematic deviations from the pre-
dictions of the power PC model (see Fig. 2). For an illustra-
tion, consider the left contingency table depicted in (a). Al-
though the effect never occurred in the absence of the cause,
only four co-occurrences are observed. This relatively low
frequency of co-occurrence is the reason for the relatively
high probability of Sy. Hence, based on this information, it
seems reasonable to be cautious about the causal relation of a
singular co-occurrence. By contrast, consider the right table

in (a). Here again, the effect never occurred in the absence
of C but it occurred frequently in its presence. In this case,
the data suggest a strong generic causal relationship between
the factors. Now, when presented with a singular case, rel-
atively high confidence in a case of actual causation is to be
expected.

Experiment 1

The experiment tests the SI model against the power PC the-
ory as an account of how subjects answer singular causal
queries. Fig. 2 shows the predictions of the models for the
two data sets that we used. The power PC model predicts
invariance whereas our SI model of singular causation pre-
dicts that judgments should vary. This is because the likeli-
hood that the observed data pattern was produced by structure
S varied between the two different contingencies. We also
wanted to address a second question: Do subjects differen-
tiate between generic and singular queries? To test this, we
compared a generic with a singular query in the experiment.

Design, Materials, and Procedure

Sixty-one subjects completed this online experiment for mon-
etary compensation. Fifty-six subjects (mean age = 29.16
years, SD = 8.4 years, 28 were female) passed our embed-
ded attention check and were included in the analyses. The
contingencies (see Fig. 2) were varied between subjects.

We used a fictitious story of a single sea devil living in an
aquarium. Our subjects were asked to assume they were biol-
ogists being interested in whether noise causes the fish’s an-
tenna to flash. Subjects read they should imagine having run
a single-case study with one fish to test this hypothesis. We
then instructed our participants that they will see the results
of this study. They read that the fish was placed in front of a
loudspeaker twenty times and that the loudspeaker was off at
first and activated subsequently to assess the fish’s reaction.
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Figure 2: Predictions of the power PC and the ST model of
singular causation are depicted in (a), the results in (b). Dark
and light bars show means (95% CI) of the generic and sin-
gular causation ratings, respectively.



Having read the instruction, subjects saw the results of the
observations arranged in a table with four columns and five
rows. Below each depiction of the fish, located in front of
a tiny loudspeaker, a little yellow scrip was placed that indi-
cated the respective trial number. The initial screen showed
the state of the fish as the loudspeaker was off (— c). Next,
we presented the results as the loudspeaker was activated (c),
symbolized by tiny sound waves. A yellow color of the fish’s
flash bulb indicated the flashing of the antenna.

To test intuitions about generic causation we asked sub-
jects how appropriate it is to say (on a rating scale from 0
to 100) that noise is a cause of the flashing of the sea devil’s
antenna. The corresponding question targeting singular cau-
sation asked subjects to focus on the first trial of the obser-
vations in which the fish’s antenna had flashed upon noise
exposure. Subjects were requested to indicate (again using
a scale ranging from O to 100) how appropriate it is to say
that the noise had caused the flashing of the fish’s antenna
in this particular trial. Additionally, we also asked subjects
about a trial in which the antenna did not flash upon noise
exposure. Furthermore, we asked them to make a predictive
judgment concerning a hypothetical new trial. Here, we asked
how likely it is that the fish would flash its antenna again.

Results and Discussion

The results can be seen in Table 1 and Fig. 2. Fig. 2 shows
that participants judged the generic-level causal relationship
between noise and antenna flashing differently for the two
contingencies. On average, ratings were higher in the high
contingency condition compared to the low contingency con-
dition. As predicted by the SI model, the singular cause rat-
ings were also different in the two conditions.

A 2 (contingency) X 4 (type of rating) mixed ANOVA with
the second factor being varied within subject yielded a signifi-
cant main effect of contingency, F(1,54) = 82.00, p < .001, a
significant main effect of rating, F(3,162) = 53.13, p < .001,
and also a significant interaction between contingency x rat-
ing, F(3,162) = 15.74, p < .001. A planned contrast com-
paring the singular causation ratings was also significant,
t(54) =2.55, p = .01, confirming that the ratings were higher
in the high contingency condition. This difference is not pre-
dicted by the power PC model but it is predicted by the SI
model.

An interaction contrast comparing the difference be-
tween the generic and the singular ratings was significant,

Table 1. Mean ratings (SE of the mean) obtained for the dif-
ferent questions in the experiment.

condition

contingency: low  contingency: high

generic causation 22.40 (3.43) 73.55 (3.43)
singular causation (e, ¢) 54.00 (7.12) 75.48 (4.95)
singular causation (e, —c) 10.40 (3.58) 19.03 (5.36)
predictive probability 20.40 (3.13) 76.13 (2.48)

#(54) = 3.60, p < .001. As Fig. 2 shows, this finding is
due to the fact that the mean rating obtained for the singu-
lar causation question was higher than the generic causation
rating in the low contingency condition. While this indicates
that participants indeed conceptualized the two causal queries
differently it seems that subjects answered the generic ques-
tion with a causal strength rather than a structure estimate.
This may also explain why there was no difference between
generic and the singular ratings in the high contingency con-
dition. As can be seen in Table 1, the additional ratings for
the predictive probability were in line with the empirical pre-
dictive probability obtained in the contingency tables. Inter-
estingly, singular ratings differed from zero in both groups for
the trial in which the fish did not show a flashed antenna after
noise exposure. These ratings were also higher in the high
contingency condition than in the low contingency condi-
tion. This seems to reflect an unpredicted influence of generic
knowledge, but it should be noted that the ratings were the
lowest in the set.

In sum, the results favor our SI model of singular causation.
We obtained the predicted slope of the ratings that contradicts
the power PC model predictions. Furthermore, the results
obtained in the low contingency condition show that subjects
differentiated between a generic and a singular causal query.

Experiment 2

In Experiment 1 we used data sets in which the cause ap-
peared necessary for the effect. To test our model for data
sets in which all event types exist, we used in the present ex-
periment the three contingency tables shown in Fig. 3. Again,
the power PC model predicts invariance. This time it pre-
dicts values of 0.83, whereas the SI model predicts a slope.
For this experiment, we also wanted to compare the SI model
with a Bayesian variant of the power PC model (Holyoak et
al., 2010) that takes into account parameter uncertainty but
not structure uncertainty. For this model, we also used un-
informative priors over the parameters. As can be seen, the
predictions of this model are very similar to the predictions
of the power PC model but slightly lower on average.

A second change was that the generic information did not
refer to a time series of trials involving a single individual, but
a sample of different individuals. Thus, we were interested in
testing how subjects use generic information about a sample
of different fish to respond to a causal query about a singular
case.

Design, Materials, and Procedure

Thirty-eight participants (mean age = 31.23 years, SD = 8.90
years, 14 were female) completed this online experiment. The
data sets were presented to each subject.

In this experiment, all forty observations were shown in
random order on the screen in a table with five columns and
eight rows. Subjects should assume they were biologists who
had studied the influence of chemicals on gene mutations in
populations of sea devils. They were instructed that they will
see the results of these studies. Subjects also read that the
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Figure 3: Model predictions and results (95% CI) for the dif-
ferent data sets used in Experiment 2.

chemical had been injected in half of the sample in each study
and that the whole sample had later been tested for mutation.
We used differently colored circles (red vs. blue) to indicate
the presence vs. absence of gene mutations; a black margin
around circles indicated chemical treatment. Finally, we in-
structed our participants that their task will be to provide a
judgment concerning a single case.

For each data set, participants were asked to imagine a new
individual fish which had ingested the chemical and also had
the mutation. This time, we asked for the probability (on a
scale from 0 to 100) that the chemical caused the gene muta-
tion in this single case.

Results and Discussion

As can be seen in Fig. 3, ratings differed across the three data
sets. A repeated-measure ANOVA with “data set” as within-
subject factor was significant, F(2,74) = 4.19, p = .02. This
main effect was due to the ratings for the first data set be-
ing different from those for the second and the third data set,
t(37) = 2.77, p < .01. The ratings for the second and the
third data set did not differ, #(37) = 0.39. The dampening of
the upward trend across the three data sets is consistent with
our SI model, although the model predicts a slight downward
trend between the second and third data set. In contrast to
what we observed in the first experiment, the singular causa-
tion ratings for all three data sets were lower than predicted
by the SI model. One explanation for this finding may be that
the type of data presentation that we used made it hard for
participants to grasp the contingencies precisely, because all
observations were presented on the screen in random order
and also in combination with abstract symbols.

In sum, the results again favor our SI model of singular
causation over the power PC model and also over a Bayesian
variant of the power PC model as an account of how sub-
jects respond to causal queries about singular causation. The
present experiment further demonstrates that not only time
series data but also data about samples of different individu-
als are used to derive a prediction for a singular case.

Experiment 3

In the first two experiments we dissociated the ST model of
singular causation from the power PC model by using data
sets for which the power PC model predicts invariance. To
obtain additional evidence for the validity of the SI model
we conducted an experiment with data sets for which the SI
model predicts invariance but the power PC model does not.
We obtained invariant predictions of the SI model by coun-
teracting a slight decrease in contingency across the two con-
trasted data sets (see Fig. 4) with an increase of sample size.

Apart from singular causal inferences, we also tested
whether participants would infer a higher probability for the
existence of a generic causal relationship (i.e., for S;) for the
larger sample (Fig. 4, right), which is predicted by the SI
model for generic queries. Our model predicts an interaction
effect between the type of question and data set.

Design, Materials, and Procedure

All subjects saw both data sets. The type of question (confi-
dence in generic vs. singular causation) was manipulated be-
tween subjects. 101 subjects participated in the online study
(mean age = 31.40 years, SD = 11.10 years, 43 were female)
and provided valid data.

Participants read that they should imagine to be biologists
who tested the influence of the chemical “Acrinazyl” on the
expression of the gene ASPM in mice in an experiment using
a sample of twenty test animals. They were instructed that
one half of the sample served as a control group. We pre-
sented the two halves of the sample separately on the same
screen. Different colors indicated the status of ASPM. In the
generic condition, we asked subjects to indicate (on a slider
ranging from 0 to 100) how confident they are that the chemi-
cal does indeed raise the probability of ASPM expression. We
were hoping that this test question would less ambiguously
refer to generic causal relations than the one we used in Ex-
periment 1. In the singular condition, subjects were instructed
that they should imagine having picked out a single mouse
from the Acrinazyl group with ASPM being expressed. They
were asked how much confidence they had that it was indeed
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Figure 4: Model predictions and results (95% CI) for the dif-
ferent data sets used in Experiment 3.



the chemical that caused the gene expression in this particu-
lar mouse. Subjects indicated their confidence using a slider
ranging from O to 100.

After participants had provided these ratings they read that
they had conducted a second experiment with a larger sample
size. We then showed them the results of the second study
and asked them to re-assess their ratings in light of the results
of this second study.

Results and Discussion

Fig. 4 shows that the singular ratings are well captured by the
SI model. Moreover, as predicted by the SI model, the mean
ratings for the generic causal question increased between data
sets (M = 63.54, SE = 1.00; M = 68.63, SE = 1.00). A
mixed ANOVA confirmed our predictions with a significant
main effect for causal question, F(1,99) =7.42, p < .01, and
a significant interaction between question type and data set,
F(1,99) = 6.60, p = .02. Furthermore, there was no differ-
ence between the singular causal ratings, #(46) = 1.34.

Overall, Experiment 3 was in line with the predictions
of our SI model of singular causation. We also demon-
strated again that subjects treat singular and generic causation
queries differently.

General Discussion

We tested a new model of how people respond to queries
about singular causation. Simply observing two consecutive
events at a specific space-time location does not suffice. The
question needs to be answered whether this co-occurrence
manifests a causal relation or merely a coincidence. We ar-
gued that one relevant source of knowledge are generic causal
relations. However, knowing, for example, that smoking gen-
erally increases the risk of lung cancer does not imply that
a specific cancer patient who has smoked throughout her life
has actually contracted the disease because of this risk factor.
A coincidence is still possible.

One strategy that has been suggested in the literature is
that judgments about singular causation should rely on un-
veiling causal mechanisms: observations of tar in the lung
and genetic alterations in a cancer patient would strengthen
the claim of singular causation. However, observing chains
of singular events only helps with the question of singular
causation if there is reason to assume that they are causally
related. Thus, generic knowledge is necessary here as well
(see also Danks, in press).

Since studying chain-like mechanisms does not fully solve
the problem of how generic and singular causation are related,
we here began with the simplest case with one cause and one
effect event. In three experiments we showed that subjects
used contingency information from both time series data of
an individual and from group data when making judgments
about singular causation.

We also showed that subjects differentiated between
generic and singular causation. The responses to queries
about singular causation were best explained by a variant of
the SI model from Meder et al. (2014) that computes an esti-

mate of causal responsibility (Cheng & Novick, 2005). Un-
like its main competitors, the SI model is sensitive to the un-
certainty of both the causal structures and their parameters.

Our research is just a first step. We have compared the SI
model with two power PC models. However, we kept the pri-
ors uninformative and did not model different types of priors
(e.g., Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008).

Another question that we want to address in future research
is how subjects assess generic causal relations in time se-
ries versus group samples. Finally, it would be interesting
to broaden the scope of the SI model by applying it to more
complex causal models, such as causal chains, to gain insights
in the important role that mechanism knowledge plays in sin-
gular causal inferences.
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