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Evaluating General versus Singular Causal Prevention
Simon Stephan1 (simon.stephan@psych.uni-goettingen.de), Sarah Placı̀2 (sarah.placi@unitn.it)

Michael R. Waldmann1 (michael.waldmann@bio.uni-goettingen.de)
1Department of Psychology, University of Göttingen, Germany

2Animal Brain Cognition Group, University of Trento, Italy

Abstract

Most psychological studies focused on how people reason
about generative causation, in which a cause produces an ef-
fect. We here study the prevention of effects both on the
general and singular level. A general prevention query might
ask how strongly a vaccine is expected to reduce the risk of
contracting COVID-19, whereas a singular prevention query
might ask whether the absence of COVID-19 in a specific vac-
cinated person actually resulted from this person’s vaccination.
We propose a computational model answering how knowledge
about the general strength of a preventive cause can be used
to assess whether a preventive link is instantiated in a singu-
lar case. We also discuss how psychological models of causal
strength learning relate to mathematical models of vaccination
efficacy used in medical research. The results of an experiment
suggest that many, but not all people differentiate between pre-
ventive strength and singular prevention queries, in line with
the formal model.
Keywords: prevention; causal strength; vaccination efficacy;
general causation; singular causation; computational modeling

On December 31, 2019, the World Health Organiza-
tion’s (WHO) country office in China picked up a media
statement by the Wuhan Municipal Health Commission
on cases of viral pneumonia in Wuhan. After only a
short time, it became apparent that these cases of ill-
ness were caused by a novel virus, SARS-CoV-2. The
virus turned out to be spreading so rapidly that the out-
break had to be declared a pandemic on March 11, 2020
(see https://www.who.int/emergencies/diseases/
novel-coronavirus-2019/interactive-timeline?).

One of the most effective means to combat viruses, such as
SARS-CoV-2, is vaccination. Accordingly, great efforts have
been made to develop vaccines against SARS-CoV-2. The
first effective vaccines were developed and licensed within
just one year. A key parameter in the development of vac-
cines is their preventive efficacy (see, e.g., Orenstein et al.,
1985), which typically is understood as a vaccine’s capacity
to reduce the risk of severe disease progression, assessed in
the context of a clinical trial. For example, the vaccines of
Moderna and BionTech-Pfizer, which have already been ap-
proved by several countries, are expected to have a preventive
efficacy of about 95 percent (see, e.g., Zimmer, 2020).

From a psychological perspective, the urgent search for
vaccines during a pandemic forcefully illustrates that it is
important to understand how people learn and think about
preventive causal relations. In preventive causal relations,
the occurrence of a target cause (e.g., getting vaccinated)
is associated with the absence of an effect (e.g., not con-
tracting a disease). Although preventive causation is cap-
tured by different theoretical frameworks of causal induction
(e.g., Cheng, 1997; Goldvarg & Johnson-Laird, 2001; Wolff,

2007), psychological studies on causal learning and reason-
ing mostly focused on how people learn and think about gen-
erative causal relations (e.g., Griffiths & Tenenbaum, 2005)
(see also Waldmann, 2017, for overviews), in which the oc-
currence of a target cause is associated with the occurrence
of a target effect (but see, e.g., Lu, Yuille, Liljeholm, Cheng,
& Holyoak, 2008; Walsh & Sloman, 2011; Wolff, 2007, for
exceptions).

We here investigate how reasoners acquire and apply their
knowledge about preventive causal relations. In particular,
we focus on the question of how knowledge about the gen-
eral strength of a preventive causal relation can be used to
determine the probability with which this preventive relation
is actually instantiated in a singular case. Knowledge about
the general strength of preventive causal relations is, among
other things, important to plan successful interventions (e.g.,
should vaccine A or B be selected for the vaccination cam-
paign?). Being able to assess how likely it is that a preven-
tive measure has actually worked in a singular case is also
important, however. For example, people who believe that
vaccination actually prevented them from contracting a dis-
ease may be more willing to get vaccinated against another
disease in the future. In contrast, vaccinated people who be-
lieve that it was not the vaccination (but something else) that
actually prevented them from contracting the disease might
be less willing to do so.

To answer the question of how the presence of a singu-
lar instance of prevention can be assessed based on knowl-
edge about the general strength of a preventive cause, we pro-
pose a novel equation inspired by the generalized power PC
model of singular causation judgments (Stephan, Mayrhofer,
& Waldmann, 2020; Stephan & Waldmann, 2018). The
model has previously been used to model singular causation
judgments in generative cases, but not singular prevention
judgments. Staying close to the introductory scenario, our
running example will be the vaccination against a novel dis-
ease. Since a crucial component of our model of singular
prevention is knowledge about the general strength of a pre-
ventive cause, a further theoretical goal is to compare and
connect mathematical models used in medicine to assess vac-
cination efficacy with psychological computational models of
causal strength induction. We also present the results of a
first experiment, in which we asked subjects to answer either
general preventive efficacy or singular prevention queries. To
foreshadow our results, in line with the formal analysis, sub-
jects tended to give different answers to the two types of
queries. The general and singular prevention judgments of
many subjects were predicted well by the formal models.
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a) b) 

Figure 1: Two example contingency data sets. In a) vaccination is a sufficient but not a necessary preventer of the disease. In b) vaccination
is a necessary but not a sufficient preventer.

However, we also found that some subjects appear to have
confused singular prevention queries with general preventive
strength queries. We discuss theoretical and empirical impli-
cations of our findings and conclude with an outlook on future
studies.

Estimating a vaccine’s preventive efficacy
The standard mathematical formula used by medical re-

searchers to determine the preventive efficacy of a vaccine has
been developed by Yule and Greenwood (1915), who evalu-
ated the outcomes of numerous clinical studies investigating
the success of vaccination (called preventive inoculation at
the time) against typhoid and cholera. The version of their
mathematical formula most often used today was proposed
by Orenstein et al. (1985). It is given by the following equa-
tion:

V E =
ARU−ARV

ARU
·100. (1)

ARU denotes the attack rate among unvaccinated individuals,
which is the proportion of cases of the disease that occurred
during a defined period of time in the population of unvac-
cinated individuals. ARV denotes the attack rate among vac-
cinated individuals. It represents the proportion of cases of
the disease that during the same period occurred in the vacci-
nated population. To express V E as a percentage, the fraction
is multiplied by 100.

Fig. 1 shows two graphical illustrations that are useful to
demonstrate how Equation 1 works. The left panel in each
figure represents a population of 120 vaccinated individuals
and the right panel represents a population of 120 unvacci-
nated individuals. The effect in this example is “contraction
of a fatal disease caused by a bacillus”. Individuals who sur-
vived and who died from the disease are depicted as green
and grey circles, respectively. The pipettes with the warn-
ing label next to each panel illustrate that both the vaccinated
as well as the unvaccinated populations had been exposed
to the bacillus. In Fig. 1a, the attack rate among unvacci-
nated individuals (ARU) is 60/120 = 0.5, whereas the attack
rate among vaccinated individuals (ARV ) is 0/120 = 0. By
contrast, in Fig. 1b all unvaccinated individuals have died,
ARU = 120/120 = 1, while the attack rate among vacci-

nated individuals (ARV ) is 60/120 = 0.5. The numerator of
Equation 1 measures how much the probability of the effect
decreases in the presence compared to the absence of vaccina-
tion. The attack rate reduction given vaccination is identical
in Fig. 1a and b, ARU −ARV = 0.5, or 50%. To control for
the fact that some individuals may survive even without vac-
cination, the observed attack rate reduction is then restricted
to the proportion of individuals in whom the vaccination can
be expected to make a difference. As ARU is an estimator of
this proportion of individuals, this is achieved by dividing the
attack rate reduction through ARU . As a result, despite identi-
cal reduction rates, the estimated vaccination efficacy differs
between Fig.1a and b. In Fig. 1a, it is V E = ARU−ARV

ARU ·100 =
0.5−0

0.5 · 100 = 100%. In Fig.1b, V E is equal to the reduction
rate, V E = ARU−ARV

ARU ·100 = 1.0−0.05
1.0 ·100 = 50%.

The examples illustrate that Equation 1 measures the de-
gree of sufficiency of a preventive cause. In Fig. 1a, the vac-
cine appears to be perfectly effective, captured by V E =
100%, whereas this does not seem to be the case for the vac-
cine in Fig. 1b, despite identical observed reduction rates.

It has already been established by Yule and Greenwood
(1915) that Equation 1 is a reliable estimator for a vaccine’s
preventive efficacy only if certain conditions are met (Yule &
Greenwood, 1915, pp. 115):

1. The persons must be, in all material respects, alike.

Under all material respects Yule and Greenwood (1915)
understand factors that might affect the liability to the disease
or, if the outcome is the fatality rate as in our example, the
probability to die from the disease. These factors may include
age, medical condition, or the history of prior infections.

2. The effective exposure to the disease must be identical in
the case of inoculated and unvaccinated people.

3. Inoculation and disease should have occurred indepen-
dently.

The second criterion would be violated, for example, if
vaccinated individuals were systematically exposed to a less
potent variant of the virus than unvaccinated individuals. In
this case, Equation 1 can be expected to overestimate V E.
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Figure 2: Causal Bayes net in which C and A combine according
to a noisy-AND-NOT function. C represents a preventive cause of
effect E. A summarizes all generative causes of E. bc and ba denote
the causes’ base rates. pc and qa denote the causes’ preventive and
generative strength, respectively.

The third criterion would be violated, for example, if the sam-
ple of unvaccinated subjects contained a higher number of in-
dividuals who already had contracted (and survived) the dis-
ease. As the attack rate among unvaccinated patients (ARU)
can be expected to be reduced in this case, Equation 1 would
underestimate V E.

A causal Bayes net representation of vaccination
efficacy

From a causal Bayes net perspective (Griffiths & Tenen-
baum, 2005; Pearl, 2000), the assumptions under which
Equation 1 yields a reliable estimate of a vaccine’s general
preventive efficacy V E instantiate a common-effect network
in which the causes of the target effect combine according
to a noisy-AND-NOT function. An illustration is shown in
Fig. 2. C (e.g., a vaccine) represents a preventive cause of E
(e.g., a disease), and A represents a conglomerate of gener-
ative causes of the effect (or only a single generative cause,
such as a novel virus). Under a noisy-AND-NOT parameteri-
zation, C prevents E with strength pc and A generates E with
strength qa (or ba · qa if A is unobserved). It is also assumed
that C and A, when simultaneously present, influence E inde-
pendently, that a cause’s strength does not depend on its base
rate, and that E does not occur unless it is caused (Cheng,
1997). Under these assumptions, the generating function of
the effect is: P(e+|a,c;qa, pc) = baqa−baqabc pc. As Cheng
(1997) showed, the preventive strength (or power) pc of C can
then be estimated based on the observed contingency between
C and E by:

pc =−
P(e+|c+)−P(e+|c−)

P(e+|c−)
=− ∆P

P(e+|c−)
. (2)

Equations 1 and 2 can be directly related. If E represents
the contraction of a fatal disease caused by a virus and C
represents vaccination, then P(e+|c+) and P(e+|c−) corre-
spond to ARV and ARU , respectively. Thus, V E = pc · 100
or pc = V E

100 in this case. Furthermore, both equations ex-
press that a candidate cause’s preventive strength can only be
determined if the probability of the effect in the absence of
the candidate cause (P(e+|c−) or ARU) is > 0; both equa-
tions are undefined for ARU = P(e+|c−) = 0. One reason
why the efficacy of Corona vaccines could be determined rel-
atively fast is that (sadly) ARU was notably larger than 0 in
the beginning of the pandemic.

Estimating the probability of actual prevention
We now show how, under the above conditions, pc (or V E)

can be used to estimate the probability with which a preven-
tive cause has actually prevented the effect in a singular case.
To accomplish this, we build on the generalized power PC
model of singular causation judgments (Stephan et al., 2020;
Stephan & Waldmann, 2018), which models singular causa-
tion judgments in generative causal scenarios. In the genera-
tive case, in which C is assumed to produce E with strength
qc, the model provides answers to queries like “How likely
is it that C caused E in this particular case in which c+ and
e+ actually co-occurred?” by estimating P(c+→ e+|c+,e+),
which is given by:

P(c+→ e+|c+,e+) = qc−qcbaqaα

qc +baqa−qcbaqa
=

qc−qcbaqaα

P(e+|c+)
.

(3)
The numerator term qcbaqaα represents the probability with
which the target cause c+ was causally preempted by a com-
peting generative cause a+ on an occasion, which needs to be
subtracted from the target cause’s strength qc. Since causal
preemption can occur only on occasions on which competing
generative causes are actually strong enough to produce e+,
one part of this term is qcbaqa, which identifies these occa-
sions. On these occasions it needs to be specified whether a+

causally preempted c+. The parameter α determines the pro-
portion of cases on which this is the case. According to the
theory, α can be determined based on temporal information
(see Stephan et al., 2020).

In a preventive context like the vaccination scenario, we
may accordingly ask “What is the probability that the vac-
cination of this individual actually prevented this individual
from contracting the fatal disease caused by the virus?”. Im-
portantly, unlike previous studies that solely focused on gen-
eral preventive causal strength (e.g., Lu et al., 2008), we here
distinguish between cases in which a cause prevents an ef-
fect from happening, i.e., cases in which an effect is initially
absent and remains absent, and cases in which a preventive
cause makes an effect disappear. The notation we introduce
for cases in which a cause prevents an effect from happening,
which are the ones we focus on, is P(c+ ( e+|c+,e−). By
contrast, the notation we suggest for cases in which the pres-
ence of a preventive cause initiates a change of the effect’s
status from present to absent is P(c+ → e−|c+,e−). A key
difference between these two cases is that a singular instanti-
ation of prevention in which the target cause keeps the effect
from happening (c+ ( e+) requires that (1) the generative
cause of the effect is present and (2) sufficiently strong to pro-
duce the effect. The idea here is that actual prevention cannot
occur in a specific case unless there actually is a generative
cause of the effect present that would lead to the occurrence
of effect (e+) if the preventer was not present. By contrast,
in cases in which a preventive cause leads to a change in the
effect’s status from present to absent (c+→ e−), the base rate
and strength of the generative cause(s) that generated the ef-
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fect (e+) can be neglected for the computation of the proba-
bility of actual prevention of e by c. Written in terms of the
parameters of the underlying causal Bayes net, the equation
estimating P(c+ ( e+|c+,e−) is:

P(c+ ( e+|c+,e−) =
pcbaqa

1− (baqa− pcbaqa)
. (4)

The product pcbaqa in the numerator of Equation 4 rep-
resents the relative frequency of cases in which C is strong
enough to prevent E if the generative cause A is simultane-
ously strong enough to generate E. This term is the theoret-
ically most important element of the equation. It expresses
the assumption that a preventive target cause can actually
have prevented the target effect only on occasions on which
a generative cause of that effect is present and strong enough
to generate the effect. Expressed in counterfactual terminol-
ogy, a preventive cause actually prevented an effect only if a
present generative cause would have produced the effect if the
preventive cause had been absent. Furthermore, since accord-
ing to Fig. 2 the target cause C is not competing with further
explicit preventive causes, the problem of causal preemption
does not occur. The influence of additional unobserved pre-
ventive causes is assumed to be expressed implicitly in A’s
parameters (and thus ARU). For example, if ARU = 1, one
can conclude that no preventive causes other than C exist. The
denominator of Equation 4 represents the relative frequency
of cases in which the target effect actually remained absent in
the target cause’s presence. Equation 4 can also be expressed
purely in terms of observable probabilities:

P(c+ ( e+|c+,e−) =
P(e−|c+)−P(e−|c−)

P(e−|c+)
, (5)

or in a form using the medical terminology of Equation 1:

P(v+ ( a+|v+,a−) = V E ·ARU
1−ARV

. (6)

In the latter equation, v denotes vaccination and a denotes
attack by the disease. To illustrate these equations, we return
to Fig.1. We consider a randomly sampled vaccinated indi-
vidual who survived. In Fig.1a, the probability that the vac-
cination actually prevented a fatal attack in this individual is
P(v+ ( a+|v+,a−) = 1·0.5

1−0 = 0.5. Equation 6 takes into ac-
count that 50% of the individuals are not attacked by the dis-
ease even without vaccination (e.g., due to natural immunity).
It predicts that vaccination did not actually prevent the disease
in such a case, even though it is generally a hundred percent
effective. Thus, in this case vaccination is not necessary to
stay healthy. A different prediction is obtained for the exam-
ple in Fig.1b. In this case P(v+ ( a+|v+,a−) = 0.5·1

1−0.5 = 1.0.
Since all unvaccinated individuals are attacked by the disease,
vaccination is necessary to stay alive. The model predicts that
every healthy vaccinated individual must therefore have been
protected by the vaccination, even though vaccination does
not guarantee health.

0/120
120/0

0/120 0/120 0/120
90/30 60/60 30/90

90/30
120/0

60/60 30/90 0/120
120/0 120/0 120/0

Data Set

P(e+|c+) =
P(e+|c-) =

Figure 3: Predictions for different data sets tested in the experiment.
Red lines show preventive strength values (Equations 1 and 2). Blue
lines show singular prevention predictions (Equations 5 and 6).

Fig. 3 shows the predictions for different data sets. Red
lines show the general preventive strength as computed by
Equations 1 and 2. Blue lines show the predictions for actual/
singular prevention as computed by Equations 4, 5, and 6.
The left panel displays data sets in which the target cause is a
sufficient but not a necessary preventer of the effect, whereas
the right panel displays data sets in which the cause is a nec-
essary but not a sufficient preventer.

Experiment
The goal of the experiment was to evaluate to

which extent lay people answer general vs. actual
preventive strength queries as predicted by the mod-
els. The experimental data and all materials can
be accessed at https://simonstephan31.github.io/
singular prevention proceedings. The different contin-
gency data sets we tested are those shown in Fig. 3, which we
used because they clearly dissociate between the two differ-
ent types of queries. The experimental scenario was about a
group of biologists conducting laboratory studies with mice
to test the efficacy of a candidate vaccine against different
strains of a novel dangerous bacillus. The scenario described
a randomized controlled trial (RCT) in which different ran-
dom samples of mice either were or were not vaccinated
against a certain strain of the novel bacillus. Subjects learned
that they would see the results of four experiments conducted
by the biologists in which they tested the candidate vaccine
against four different strains of the bacillus. Subjects were
told that the results of each experiment would be presented
one after another in the form of short animations. The illus-
trations in Fig. 1 show snapshots of the animations. Finally,
subjects were informed about the type of test query (a general
preventive vs. a singular prevention query) that they would be
asked for each of the observed data sets.

Methods
Participants One hundred and four subjects (Mage = 37.34
years, Rangeage = 18− 77 years, 56 female, 47 male, 1
non-binary) recruited via Prolific (www.prolific.co) par-
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Table 1: Experimental results

Sufficient Preventer Necessary Preventer

0/120
120/0

0/120
90/30

0/120
60/60

0/120
30/90

90/30
120/0

60/60
120/0

30/90
120/0

0/120
120/0

Mstrength 97.9 93 88.3 87.2 28.1 54.2 70.5 99.6
SD 6.5 15.9 20.1 26.5 12.1 7.2 10.1 1.1
95% CI [90.9; 100] [86.0; 100] [81.3; 95.3] [80.2; 94.2] [21.1; 35.1] [47.1; 61.2] [63.5; 77.5] [92.6; 100]

Msingular 97.5 89.9 81.9 66.8 63.2 76.8 88.8 94.8
SD 8.6 11.0 18.1 30.6 32.6 22.4 15.0 18.0
95% CI [90.5;100] [82.9; 96.9] [74.9; 88.9] [59.8; 73.8] [56.2; 70.2] [69.8; 83.8] [81.8; 95.5] [87.8; 100]

ticipated in this online study and provided valid data. The
inclusion criteria were a minimum age of 18 years, English
as native language, and an approval rate obtained in previous
studies of 90 percent. Subjects were asked not to participate
via smartphone or tablet.

Design, Materials, and Procedure The study had a 2 (type
of test query: general preventive strength vs. singular preven-
tion; varied between subjects) × 2 (type of preventive cause:
sufficient vs. necessary; varied between subjects) × 4 (con-
tingency data set: four per condition as shown in Fig.3; varied
within subject in random order).

A demo video of the study can be found at https://
tinyurl.com/32dbmtbt. Subjects were first given some
general information about the experiment. They then read the
scenario description and received additional procedural infor-
mation. During the learning and test phase they were shown
four animations conveying the contingencies displayed in
Fig. 3. The animations were presented on separate screens.
Subjects saw that all mice were alive in the beginning. Af-
ter two seconds, all mice were simultaneously exposed to the
bacillus, which was indicated by pipettes that appeared and
released the bacillus into the mice panels. An example ani-
mation can be viewed at https://tinyurl.com/9cwvv38m.
Every animation lasted 16 seconds and subjects could watch
them as often as they wanted.

The test question was shown below each animation. Sub-
jects in the “general preventive strength query” condition
were asked: “How effectively does the vaccine prevent mice
from dying from the disease that can be caused by the in-
vestigated strain of bacteria? To rate the vaccine’s effectiv-
ity, imagine a new group of 100 unvaccinated mice who all
died from the disease caused by the studied strain of bac-
teria. Based on what you have learned, if these 100 mice
had been vaccinated, how many do you think would have sur-
vived?” The wording followed formulations used in previous
studies on causal strength learning (see, e.g., Lu et al., 2008).
Ratings were provided on a continuous slider with endpoints
labeled “None of them (0)” and “All of them (100)”. Par-
ticipants in the “singular prevention query” condition were
asked: “Imagine one of the living mice is randomly selected
from the vaccination group. Based on what you have learned,
how confident are you that it actually was the vaccination that
prevented this mouse from dying from the disease that can be
caused by the studied strain of bacteria?” Ratings were pro-

vided on a continuous slider with endpoints labeled “Certain
that it was not the vaccination that prevented the mouse from
dying (0)” and “Certain that it was the vaccination that pre-
vented the mouse from dying (100)”. To encourage subjects
to think thoroughly, we also asked them to write short expla-
nations for their ratings.

Results and Discussion
Table 1 and Fig. 4 show the results. The bold colored lines

show the mean ratings (error bars denote 95% bootstrapped
CIs) and the Jittered pale lines show subjects’ individual rat-
ings. Subjects tended to answer general preventive strength
and singular prevention queries differently. The overall pat-
tern are generally consistent with the predictions shown in
Fig. 3. Subjects’ preventive strength ratings largely followed
Equations 1 and 2, whereas their singular prevention judg-
ments were better explained by Equations 5 and 6. In line
with the predictions, a mixed ANOVA (with Greenhouse-
Geisser correction applied) yielded significant interaction ef-
fects between (1) “Type of test query” and “type of preven-
tive cause”, F(1,100) = 24.10, p < .001, η2

p = .194, and
(2) between “Type of test query” and “contingency data set”,
F(2.03,202.63) = 20.22, p < .001, η2

p = .168. The three-
way interaction between all factors did not reach significance,
however, p = .127.

Table 1 and Fig. 4 also show that we observed high in-
terindividual variability in subjects’ ratings, particularly in

0/120
120/0

0/120 0/120 0/120
90/30 60/60 30/90

90/30
120/0

60/60 30/90 0/120
120/0 120/0 120/0

Data Set

P(e+|c+) =
P(e+|c-) =

Figure 4: Experimental results. Bold lines show the mean ratings
(error bars show 95% bootstrapped CIs). The jittered thin pale lines
show subjects’ individual ratings.
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P(e+|c+) = 0/120

P(e+|c-) = 120/0
0/120 0/120 0/120
90/30 60/60 30/90

90/30
120/0

60/60 30/90 0/120
120/0 120/0 120/0

Data Set

a) Clustered preventive strength judgments

0/120
120/0

0/120 0/120 0/120
90/30 60/60 30/90

90/30
120/0

60/60 30/90 0/120
120/0 120/0 120/0

Data Set

b) Clustered singular prevention judgments

P(e+|c+) =
P(e+|c-) =

Figure 5: Results of the model cluster analysis. Bold lines show mean ratings of the clusters (error bars denote 95% bootstr. CIs).

their singular prevention ratings (blue lines). The pattern in-
dicates two distinct subgroups. While the singular prevention
ratings of one subgroup closely followed the predictions of
Equations 4, 5, and 6, a second group tended to answer the
singular prevention queries as if they were responding to the
general preventive strength query. As for the generative pre-
vention judgments, the red lines in the “sufficient preventer”
condition indicate that a small subgroup of subjects tended to
report the observed probabilistic difference (ARU −ARV or
|∆P|) instead of V E.

To further examine the individual rating patterns, we con-
ducted a model-based cluster analysis. In the “general pre-
ventive strength query” condition, the included models were
Equation 1 and ARU −ARV (or |∆P|). In the “singular pre-
vention query” condition, we included Equations 6 and 1.
Subjects were assigned to model clusters based on the min-
imum mean distance of their ratings from the predictions of
the models. Fig. 5 shows that the general preventive strength
ratings (a) of most subjects were best predicted by V E (or
pc). The ratings of a small group followed ARU −ARV (or
|∆P|). As for the “singular prevention query” condition, the
results corroborated the rating pattern indicated in Fig. 4. In
the condition in which subjects saw that vaccination was a
necessary preventer, half of the subjects gave singular pre-
vention ratings in line with Equation 6. The other half seems
to have responded with the general preventive strength (V E or
pc) of the cause. In the “sufficient preventer” condition, the
proportions were 40 and 60 percent, respectively. A review
of subjects’ explanations corroborated the cluster analysis.
Prototypical explanations given by subjects assigned to the
“general preventive strength” cluster were: (1) “The vaccina-
tion didn’t help much because there was still a lot of deaths”
or (2) “From the videos it looks as if the mice have a 50%
chance of survival if vaccinated”. The explanations of sub-
jects in the “Equation 6” cluster tended to express the logic
behind the equation. Two examples are: (1) “100% fatalities
in the control group, but something helped 25% of the vacci-
nated mice to survive. Not a tremendous success rate but nev-
ertheless, in the absence of other known factors the vaccine

seems likely to be the reason”, and (2) “All of the mice that
were not vaccinated died so I concluded that any mouse that
survived in the vaccinated group was a result of being vacci-
nated”. Some of the explanations suggest that some subjects
also doubted the general efficacy of the vaccine, especially for
the data sets in which its preventive strength was low. These
subjects seemed to have had a strong prior for high preven-
tive strength, which does not seem implausible in a vaccina-
tion scenario. As Stephan and Waldmann (2018) have shown,
high confidence in the existence of a general causal link is a
prerequisite for high confidence in a singular instantiation of
this link. In sum, the results suggest that many reasoners dif-
ferentiate between general preventive strength and singular
prevention queries, but responses to the latter type of query
were more heterogeneous than those to the first.

General Discussion
In the present research we provided a formal answer to the

question of how singular instances of causal prevention can
be assessed in light of knowledge about the general strength
of a preventive causal relation. The new model we presented
computes the probability with which a preventive target cause
C prevented a target effect E from happening given that C oc-
curred and E failed to occur, P(c+ ( e+|c+,e−). We also
showed that the mathematical formula used by medical re-
searchers to determine vaccination efficacy can directly be
related to computational models of causal strength learning
developed by psychologists and computer scientists. We fur-
thermore showed how our equation of actual singular preven-
tion (Equation 4), expressed in the form of causal Bayes net
parameters, can be translated into the terminology used by
medical researchers (Equation 6). Finally, we reported the re-
sults of a first empirical test of our model of actual prevention
judgments.

The key assumption of our equation of singular preven-
tion is that actual prevention can only take place on occasions
on which a sufficiently strong preventive cause meets a suffi-
ciently strong generative cause. Our experiment showed that
lay people seem to differentiate between general preventive
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strength and singular prevention queries, roughly in accor-
dance with the formal models. However, these initial results
also suggest that singular prevention queries might be more
difficult to answer than general preventive strength queries.

In future studies, we plan to present additional contingency
data sets and to vary the base rate of the generative cause
(e.g., the prevalence of the bacillus). This will allow us to
ask subjects about test cases in which the preventive cause is
present but the generative cause is absent. Our model predicts
that subjects should rule out a singular instance of prevention
in such cases. To generalize beyond vaccination scenarios,
we also plan to test additional cases of prevention. Finally, we
plan to test and compare scenarios in which a preventer keeps
an effect from happening (c+ ( e+) with those in which a
preventive cause makes an effect disappear (c+→ e−).
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