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A B S T R A C T   

Singular causation queries (e.g., “Did Mary's taking contraceptives cause her thrombosis?”) are ubiquitous in 
everyday life and crucial in many professional disciplines, such as medicine or law. Knowledge about general 
causal regularities is necessary but not sufficient for establishing a singular causation relation because it is 
possible that co-occurrences consistent with known regularities are in an individual case still just coincidental. 
Thus, further cues are helpful to establish a singular causation relation. In the present research we focus on 
information about mechanisms as a potent cue. While previous studies have shown that reasoners consider 
mechanism information as important when it comes to answering singular causation queries, no formal model 
has been proposed that explains why this is case. We here present a computational model that explains how 
causal mechanism information affects singular causation judgments. We also use the model to identify conditions 
that restrict the utility of mechanism information. We report three experiments testing the implications of our 
formal analysis. In Experiment 1 we found that reasoners systematically use mechanism information, largely in 
accordance with our formal model, although we also discovered that some people seem to rely on simpler, 
computationally less demanding reasoning strategies. The results of Experiments 2 and 3 demonstrate that 
reasoners have a tentative understanding of the conditions that restrict the utility of causal mechanism 
information.   

1. Introduction 

The main focus of past research on causal reasoning has been on how 
we acquire and use knowledge about causal regularities (e.g., “smoking 
causes lung disease”). It has been shown that such knowledge can sup-
port various causal inference types, including predictions, diagnoses, or 
explanations (see Sloman, 2005; Waldmann, 2017, for overviews). In 
the present research we investigate how reasoners determine the sin-
gular cause(s) of an observed event. As opposed to general causation 
queries that focus on general causal regularities (e.g., “Do contraceptives 
cause thrombosis?”), singular causation queries refer to causal connec-
tions between events that actually occurred in a particular place at a 
particular time (e.g., “Was Mary's thrombosis caused by the contracep-
tives she took?”) (see Danks, 2017; Russo & Williamson, 2011, for 
overviews). Even when a general probabilistic causal relationship be-
tween two types of events has been established, the co-occurrence of the 
two events may still be a coincidence. How do reasoners determine 
whether a potential cause c actually caused an observed effect e or 
whether the co-occurrence was a coincidence and e was actually caused 

by some alternative cause a? The question of how people answer sin-
gular causation queries is relevant not only because such queries are 
prevalent in our everyday lives, but because they are also frequently 
asked in a number of professional disciplines, such as medicine or law 
(cf. Hart & Honoré, 1985; Lagnado & Gerstenberg, 2017; Russo & Wil-
liamson, 2011). Given that causal connections between events are not 
directly observable, the question is how reasoners decide that a 
co-occurrence of events is actually causal. 

A widespread view both in philosophy and psychology is that rea-
soners must use their general causal knowledge to answer singular 
causation queries (Cheng & Novick, 2005; Danks, 2017; Hitchcock, 
2009; Lagnado & Gerstenberg, 2017; Lagnado et al., 2013; Stephan 
et al., 2018, 2020; Stephan & Waldmann, 2018). According to recent 
psychological computational models of singular causation judgments 
(Cheng & Novick, 2005; Stephan et al., 2020; Stephan & Waldmann, 
2018), one type of general causal knowledge crucial for the assessment 
of singular causation is knowledge about the strength of the potential 
causes, which can be induced from observable patterns of statistical 
dependencies (Cartwright, 1989; Cheng, 1997; Cheng & Lu, 2017; 
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Griffiths & Tenenbaum, 2005; Novick & Cheng, 2004) or through 
analogical reasoning (Holyoak et al., 2010). Another relevant type of 
knowledge is temporal knowledge, such as knowledge about the causal 
latency of the potential causes (Stephan et al., 2018, 2020). 

The present research focuses on a further cue that has been identified 
in the philosophical literature (Cartwright, 2015, 2017; Danks, 2005) as 
important for establishing singular causation relations – knowledge 
about causal mechanisms. In psychological studies, causal mechanism 
information has been found to play a role in causal reasoning in a 
number of different contexts (Ahn & Bailenson, 1996; Ahn et al., 1995; 
Hegarty, 2004; Johnson & Ahn, 2015; Lombrozo, 2010; Park & Sloman, 
2013; see Johnson & Ahn, 2017, for a recent overview). Moreover, in 
line with different philosophical accounts, studies have shown that 
people, even young children (Buchanan & Sobel, 2011; Cimpian & 
Erickson, 2012), consider mechanism information to be particularly 
relevant for the assessment of singular causation (Ahn & Bailenson, 
1996; Ahn et al., 1995; Johnson & Keil, 2018). For example, in a classic 
study by Ahn et al. (1995) in which subjects were asked to come up with 
an explanation for, for example, why “John had an accident on Route 7 
yesterday”, most subjects asked questions about the presence of a 
possible mechanism leading to accidents instead of questions about 
covariation information. In a more recent study by Johnson and Keil 
(2018) subjects were asked to evaluate both general and singular 
causation claims. This study found an interesting dissociation: While 
subjects who were asked to evaluate general causation claims (e.g., 
“Smoking causes cancer”) preferred to consult covariational informa-
tion, subjects asked to evaluate singular causation claims (e.g., “Jack's 
smoking caused his cancer”) preferred information about causal mech-
anisms that could link the two events. 

While previous studies have yielded interesting insights into causal 
reasoning and clearly documented that causal mechanism information 
seems to be considered by people as a relevant cue when it comes to the 
assessment of singular causation relations, what has been lacking in the 
causal reasoning literature is a formal theory that explains why rea-
soners seek for causal mechanism information when aiming to establish 
the actual singular cause(s) of an observed target effect. The goal of the 
present research is to fill this gap and to provide such a computational 
account. We focus on five key questions in this paper: (1) Why is causal 
mechanism information useful for the assessment of singular causation? 
(2) How can causal mechanism information be incorporated into a 
formal computational model of singular causation judgments? (3) How 
well does the model explain lay people's singular causation judgments 
and to which extent are people's singular judgments sensitive to the 
different relevant factors identified by the model? (4) What are the 
conditions that constrain how useful causal mechanism information is in 
the assessment of singular causation? (5) Do people recognize these 
constraints and incorporate them in their singular causation judgments? 

The basis of our formal analysis is the power PC framework of causal 
attribution proposed by Cheng and Novick (2005), which was later 
developed further into the generalized power PC model of singular 
causation (Stephan et al., 2018, 2020; Stephan & Waldmann, 2018). We 
will start with a summary of this new model (Stephan et al., 2020; 
Stephan & Waldmann, 2018), and then propose an extension that in-
corporates causal mechanism information. The extended model not only 
formalizes under which circumstances mechanism information is help-
ful for the assessment of singular causation, it also allows us to identify 
situations in which mechanism information is less helpful. We will then 
present the results of three experiments in which we systematically 
tested the predictions of the new model. 

2. The generalized causal power PC model of singular causation 
judgments 

The generalized power PC model of singular causation judgments 
(Stephan et al., 2020; Stephan & Waldmann, 2018) extends Cheng and 
Novick's (2005) power PC model of causal attribution, which applies 

Cheng's (1997) causal power PC theory (see also Cheng & Buehner, 
2012; Cheng & Lu, 2017; Liljeholm & Cheng, 2007) to situations in 
which a reasoner tries to decide whether an observed effect e is caused 
by a target cause c or an alternative cause a. The model can be illustrated 
using causal Bayes nets (Glymour, 2001; Gopnik et al., 2004; Pearl, 
1988, 2000). The causal model in Fig. 2a describes a general causal 
relationship in which C and A are two independent generative causes of 
a common effect E. C and A are assumed to combine their influence 
according to a noisy-OR gate (Glymour, 2003; Griffiths & Tenenbaum, 
2005; Meder et al., 2014; Pearl, 1988), which means that they generate 
the effect disjunctively with independent probabilities. The link pa-
rameters wc and wa represent these probabilities and are called the 
causal strengths of the causes (Cheng, 1997; Griffiths & Tenenbaum, 
2005, 2009). The noisy-OR parametrization implies that when only C 
occurs, it generates E with probability wc, i.e., P(e|c,¬a,wc) = wc, when 
only A occurs it generates E with probability wa, i.e., P(e|a,¬a,wa) = wa, 
and when both occur they have independent chances to produce E, i.e., 
P(e|c, a,wc,wa) = wc + wa − wc⋅wa (see also Griffiths & Tenenbaum, 
2005, p. 346). 

To illustrate how the generalized power PC model of singular 
causation judgments works, we assume a singular case in which both C 
and E are present (i.e., C = 1 or c, E = 1 or e) and a reasoner wonders 
whether e was actually caused by c. We assume that the alternative cause 
A is also present (i.e., A = 1 or a). According to the model, the proba-
bility that c caused e in this case is given by: 

P(c→e|c, a, e) =
wc − wc⋅wa⋅α

wc + wa − wc⋅wa
=

wc⋅(1 − wa⋅α)
P(e|c, a)

. (1) 

We first neglect the model's α parameter by assuming that its value is 
0 in the current situation. The numerator reduces to the target cause's 
causal strength wc in this case, which is then normalized by the condi-
tional probability of the effect given C and A. The model determines the 
relative frequency of cases among all co-occurrences of C and E in which 
C was strong enough to generate E, taking into consideration that A can 
also sometimes generate E. The model's predictions for different 
parameter value combinations are shown in Fig. 1. The darkest line in 
each panel captures the type of situation we are focusing on in the 
moment, situations in which α = 0. The graphs show that the model 
captures two prima facie reasonable ways of reasoning about singular 
causation. First, it predicts that reasoners should be more confident that 
c caused e, the stronger C generally is (i.e., the higher wc is). Second, it 
predicts that reasoners should be increasingly confident that c caused e, 
the weaker the alternative cause(s) A is (i.e., the lower wa is). If wa = 0, 
the model predicts that c must have caused e, no matter how weak C 
generally is. The model thus captures a way of reasoning about singular 
causation that corresponds to what has been called “Holmesian infer-
ence” or “reasoning by elimination of alternatives” (Bird, 2005, 2007, 
2010) – the inferential process by which one of multiple mutually 
exclusive explanations for a phenomenon is selected based on the rela-
tive probabilities of the competing explanations (see also Lipton, 2004; 
Lombrozo & Vasilyeva, 2017, for related accounts on abduction or 
inference to the best explanation). 

We now explain the function of the α parameter. The product wc⋅wa⋅α 
in the equation's numerator accounts for the possibility of causal pre-
emption of the target cause C by the alternative cause A. Causal pre-
emption occurs when two potential causes are simultaneously 
sufficiently strong to generate the effect but only one of them actually 
succeeds in causing the effect (see Halpern & Pearl, 2005; Hitchcock, 
2007, 2009; Paul & Hall, 2013). A famous example in the philosophical 
literature is a scenario involving two rock throwers, Billy and Suzy. Billy 
and Suzy are perfectly accurate rock throwers and neither of them, when 
acting alone, ever fails to hit and destroy a bottle (i.e., their causal 
strengths are 1.0). On a singular occasion both are aiming for the same 
bottle and both are throwing their rocks with identical speed. Suzy, 
however, manages to throw her rock a little bit earlier than Billy, and the 
bottle shatters. It is intuitively Suzy's and not Billy's rock throwing that 
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caused the bottle's breaking, even though we know that Billy's throwings 
are generally also successful. Situations in which the competing causes 
are simultaneously sufficient are identified by wc⋅wa in the equation's 
numerator. α represents a weighting parameter determining the pro-
portion of the “sufficiency overlap” in which C was preempted by its 
competitor A. α has to be determined based on information about the 
temporal relation between the causes (Stephan et al., 2020). Relevant 
temporal factors determining α are the causal latencies (put briefly: the 
quicker a cause exerts its influence compared to its competitor, the less 
likely it is preempted by that competitor) and the onset difference be-
tween them (put briefly: a cause occurring earlier than its competitor is 
less likely to be preempted by it). Since wc⋅wa⋅α is the probability that C 
is preempted by A, it needs to be subtracted from wc. α can take on any 
value between 0 and 1.0 (see Stephan et al., 2020). For example, α = 1 
models situations in which A definitely preempts C if both are simulta-
neously strong enough to generate E. An α value of 0.5 expresses un-
certainty about the causes’ preemptive relation. An α value of 0 models 
situations in which C is definitely not preempted by A. 

Equation (1) applies to situations in which C and A are both present 
(i.e., to situations in which we conditionalize on C and A's presence). 
Situations in which one or both potential causes are unobserved can also 
be modeled. In this case the causes’ strength parameters need to be 
multiplied with their respective base rate parameters, bc and ba. 

3. Incorporating causal mechanism knowledge 

We will now extend the model to address the question of how causal 
mechanism information can be incorporated into the judgment process. 
The general idea captured by the extended model is that causal mech-
anism information helps in the assessment of singular causation because 
it allows reasoners to insert more specific values for the different pa-
rameters of the original model. 

The generalized power PC model of singular causation judgments 
was originally developed for a simple common-effect causal model in 
which C and A represent direct causes of the target effect E (see Stephan 
et al., 2020; Stephan & Waldmann, 2018). However, causal models 
express a reasoner's current state of causal knowledge, and they can be 
extended if additional knowledge about the mechanisms linking causes 
and effects becomes available, thereby turning a formerly direct causal 
connection into an indirect chain (see also Stephan et al., 2021). For 
example, we might first use a causal model in which the taking of Aspirin 
and relief from headaches are directly causally connected, A → H. Later, 
we may learn about prostaglandin synthesis (P) as the underlying causal 

mechanism. This new mechanism knowledge can be incorporated into 
the causal model by changing the direct causal relation (A → H) into an 
indirect one in which variable P serves as a mediator, A → P → H. Under 
the causal Bayes net framework, causal mechanisms are understood as 
more elaborate representations of sequences of causal dependencies 
(see, e.g., Johnson & Ahn, 2015; Stephan et al., 2021; Woodward, 2011). 

Fig. 2A-C shows causal models with increasingly complex mecha-
nism representations. All models represent the same general causal 
relation with two binary causes C (C(Ω) = 0, 1, where 1 = “cause pre-
sent” and 0 = “absent) and A (A(Ω) = 0, 1) and one effect E (E(Ω) = 0, 
1), but they differ in terms of how much additional mechanism knowl-
edge is represented. In Fig. 2B two intermediate binary nodes, MC and 
MA, connecting C and A to E are added. Here the mechanisms are 
modeled as simple causal chains in which the causal Markov condition 
holds, which states that, conditioned upon its direct causes, each vari-
able in a causal network is independent of all other variables in the 
network except for its own direct and indirect effects. In the case of a 
simple causal chain A → B → C, for example, this means that given 
B = 1, the probability of C = 1 is invariant under A = 1 and A = 0. Using 
causal models augmented by intermediate nodes that represent mech-
anism variables, an important assumption that we make is that the 
initial (or global) causal strength parameters wc and wa of the causal 
model shown in Fig. 2A are now divided into two sub-components. For 
instance, C's initial strength parameter wc is partitioned into wcmc, the 
strength with which C generates its mechanism component MC, and 
wmce, the strength with which MC generates E, and it holds that wc =

wcmc⋅wmce (cf. Waldmann et al., 2008a). 

3.1. Observing that mechanisms were inactive in a singular case 

Having specified how causal mechanism knowledge can be repre-
sented with causal models, we now show how knowledge about mech-
anism variables can help with determining the singular cause of an 
effect. To better illustrate how our model works, we will use our 
experimental scenario as a running example. An illustration of that 
scenario is shown in Fig. 3. In our studies, subjects learned about the 
medical emergency system of a medieval kingdom called Tristonia. The 
scenario description first introduced the King's palace in the North (the 
effect variable E) and two castles (the two candidate causes C and A), 
one located in the Southwest and the other in the Southeast of the em-
pire. It was pointed out that the empire's only healer is living in the 
King's palace and that in case of medical emergencies the Western and 
Eastern castles must send out carrier pigeons (representing the cause 

Fig. 1. Predictions of the generalized power PC model of singular causation judgments (Equation (1)) for different values of wc, wa, and α.  
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events C = 1 or A = 1) to trigger an alarm in the King's palace (repre-
senting the effect event E = 1). It was emphasized that the pigeons 
cannot fly the whole distance to the palace, but can only reach inter-
mediate stations located halfway between a castle and the palace (rep-
resenting the mechanism nodes MC and MA). In Experiment 1 we 
introduced two alternative possibilities of how the emergency signals 
from the castles could be forwarded to the palace at these intermediate 

stations. One possibility were telegraphs and another were pony riders. 
The pony riders were introduced as back-ups for occasions on which a 
telegraph tower is blacked out. Below we will say more about these two 
different mechanism components. For the moment it is sufficient 
consider the special case that only one of these mechanism components 
exists, for example, telegraphs, and that the intermediate stations thus 
represent simple binary variables (e.g., MC = 1 = telegraph sent vs. 

Fig. 2. Different causal models in which C and A are root causes of E. Note. A: a common-effect model with two binary causes and a binary effect. B: an augmented 
version of the model with causal mechanism variables. C: the same model but C and A here generate E via different alternative mechanisms, represented by ternary 
mechanism nodes. Here, the different strengths of the root causes (e.g., wcmc1 and wcmc2) refer to the different possible states of the mechanism nodes (e.g., MC = 1 and 
MC = 2). For example, wcmc1 is the strength with which C causes MC = 1. Analogously, the different strength parameters of the mechanism nodes refer to their 
possible states. For example, wmc1e is the strength with which MC = 1 causes E. The parameter values shown in this structure are the ones we used to generate the 
model predictions for Experiment 1. D: a common-effect causal model with intersecting mechanisms. 

Fig. 3. Illustrations included in the instructions of Experiment 1.  

S. Stephan and M.R. Waldmann                                                                                                                                                                                                            



Cognition 218 (2022) 104924

5

MC = 0 = no telegraph sent). In our experiments, subjects were shown 
different pictures that showed what happened on different days. The 
different possible events were symbolized by little event icons displayed 
above the different components. An illustration of a test case is shown in 
Fig. 3B. In all test cases, subjects saw that an alarm occurred in the King's 
palace, while the states of all the other nodes of the network were varied. 
For each test case, subjects were asked to indicate how strongly they 
believed that the alarm in the King's palace was caused by the Western 
[Eastern] castle. 

To illustrate our model, we focus again on different situations in 
which a reasoner has observed that C, E, and an alternative cause A all 
co-occur, while the status of known intermediate mechanism variables 
varies. One possible observation a reasoner may make is that a known 
causal mechanism variable is inactive in the given situation. Consider 
the test case of our scenario shown in Fig. 3B. An alarm occurred in the 
King's palace on that day and both castles sent out a pigeon. We assume 
that the target cause is the Western castle. The status of the alternative 
cause's mechanism variable (i.e., the Eastern intermediate station) is 
unknown, but it is observed that the target cause's mechanism variable 
(i.e., the Western intermediate station) failed to become active on that 
day. In this case, the Western castle should be ruled out as the singular 
cause of the effect. This example illustrates that observing that mecha-
nism variables are inactive in a singular case is helpful because it helps 
to identify the actual cause of the effect through the elimination of 
possible causes. 

Importantly, our model formally captures this process. Just as wc can 
be rewritten as wcmc⋅wmce, P(c → e|c, a, e) can be rewritten as P(c → mC|c, 
a, e) ⋅ P(mC → e|c, a, e): The probability that c caused e corresponds to 
the probability that c caused mC times the probability that mC caused e 
(assuming the Markov condition holds). When we learn that the target 
cause's mechanism component was inactive in the given situation (i.e., 
MC = 0 or ¬mC), P(c → mC|c, a, e) would be 0. Since P(c → e|c, a, e) = P 
(c → mC|c, a, e) ⋅ P(mC → e|c, a, e), it follows that P(c → e|c, a, e) would 
also be 0. Discovering that the target cause's mechanism variable is 
inactive thus should lead us to rule out the target cause as the singular 
cause of e. Another way to look at this case is to consider what value wc 
would take on if we conditionalized on MC = 0. wc would be 0 and, as a 
result, Equation (1) would also yield a value of 0. 

What happens with P(c → e|c, a, e) in a situation in which a reasoner 
learns that the alternative cause's mechanism MA was inactive? Consider 
the same test case as before but assume that the target cause C now is the 
Eastern instead of the Western castle. In this case, the probability that 
MA caused e, P(a → mA|c, a, e), would be 0. The probability that a caused 
e, P(a → e|c, a, e), would thus also be 0 because P(a → e|c, a, e) = P 
(a → mA|c, a, e) ⋅ P(mA → e|c, a, e). Since the Western castle is the only 
possible alternative cause (A) of E, E is actually present (e) but a can be 
ruled out as its cause; here we should conclude that c must have caused 
e. This is formally captured by our model, as P(c → e|c, a, ¬ mA, e) is 
indeed 1.0 in this case. Conditionalizing on MA = 0, A's influence on E is 
screened off, wa takes on a value of 0, and Equation (1) reduces to wc

wc
. Our 

model thus formally captures how learning about the inactivity of 
known mechanism variables supports an epistemic process that has been 
called eliminative or “Holmesian” reasoning (Bird, 2010). 

3.2. Observing that mechanisms were active in a singular case 

Next, we consider situations in which a reasoner learns that mech-
anism variables were active instead of inactive. Previous studies showed 
that reasoners often seem to search for present possible mechanism 
variables, and we demonstrate that observing that the target cause's 
mechanism is active should indeed make it more likely that this cause 
was the singular cause of e. Imagine a test case of our experimental 
scenario in which the Western castle is the target cause C and the Eastern 
castle is the alternative cause A. It is unknown whether A's intermediate 
station is active on that day (i.e., MA = ?) but it is observed that C's 

intermediate station sent out a telegraph (i.e., MC1). Observing that the 
intermediate station of the Western castle sent out a telegraph should 
make it more likely that the Western castle caused the alarm in the King's 
palace on that day. 

Our model formally captures this intuition, as it holds that P(c → e|c, 
mC, a, e) will on average be higher than the initial P(c → e|c, a, e). If C 
(the Western castle) is a necessary cause of its mechanism MC, then P 
(c → mC|c, mC, a, e) = 1, and P(c → e|c, a, e) therefore reduces to P 
( mC→ e|c, mC, a, e). The reason why P(mC → e|c, mC, a, e) will on 
average be higher than P(c → e|c, a, e) is that the cause's global strength 
wc (e.g., the strength with which sending out a pigeon causes an alarm in 
the palace) that enters into the calculation of P(c → e|c, a, e) corresponds 
to wcmc⋅wmce (e.g., the strength with which sending a pigeon activates the 
telegraph tower, and the strength with which the telegraphs lead to an 
alarm). This implies that wmce, the strength parameter needed to 
compute P(mc → e|c, mC, a, e), will on average be higher than the global 
parameter wc. 

What if the status of MC is unobserved but it is observed that the 
alternative cause's mechanism is active? P(c → e|c, a, e) becomes smaller 
in this case because the probability that a caused e simultaneously in-
creases. wA is substituted with wmae in Equation (1). Since wmae will on 
average be higher than wa, observing MA = 1 diminishes the numerator 
and increase the denominator of Equation (1). P(e|c, a) in the denomi-
nator has to be replaced by P(e|c, a, mA) = P(e|c, mA) in this case, which 
tends to be larger than P(e|c, a). 

Discovering that mechanism components were present in a given 
situation can also be helpful in other situations. We have so far 
considered situations in which a reasoner already knows that the po-
tential causes of the effect were present (c, a). In many situations, 
however, reasoners will not have observed the potential causes of an 
effect e. In such cases, examining the status of mechanism variables 
mediating the influence of potential causes can help to reconstruct and 
narrow down the set of potential causes through a diagnostic inference 
about the likely causes of the observed mechanism variables. As an 
example, consider the case of an autopsy that reveals high concentra-
tions of a particular substance Y in the victim's blood that typically occur 
after a person ingested a certain type of poison X. If the coroner knows 
that poison X causes death via the accumulation of substance Y found in 
the victim's blood, they will treat the presence of the substance as a 
diagnostic cue for the presence of a possible cause of the victim's death, 
poisoning with X. Importantly, however, this diagnostic probability is 
not the same as the probability that the poison actually caused the 
victim's death. Generally, an inference of a possible cause based on the 
observation of its effect, given by the diagnostic probability P(c|e), is not 
the same as the probability that this cause actually is the singular cause 
of that effect.1 Consider, for example, a situation in which C and E are 
both known to be present. In such a case, a diagnostic query asking for 
the probability of C's presence is trivial, whereas a singular causation 
query asking whether c actually caused e is not. One specific example of 
such a situation is the philosophical preemption scenario about the two 
rock throwers Billy and Suzy that we described above. Generally, the the 
diagnostic probability, P(c|e), also contains cases in which C and E co- 
occurred but the effect was actually caused by an alternative cause 
(see also Meder et al., 2014). In the special case in which C is a necessary 
cause of E, both probabilities will be 1.0. We will return to the discussion 
of diagnostic and singular causation queries in the general discussion. 

3.3. More complex causal mechanisms 

The causal mechanism representations may often be richer than 
those captured by the causal model in Fig. 2B. For example, reasoners 
may assume that the causes generate their effects via different possible 

1 We thank an anonymous reviewer for pointing out to us that it is important 
to distinguish between the two types of inference. 
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mechanism pathways. As a relevant legal example consider a murder 
case in which a coroner seeks to determine whether the victim actually 
died from the bullet that hit them. The general causal relationship be-
tween being hit by a bullet and dying can be instantiated in a singular 
case via different alternative instead of only one possible causal mech-
anism. In fact, a central goal of an autopsy would be to reconstruct 
precisely which inner parts of the body have actually been injured by the 
bullet in the given case, as bullets can lead to death in different ways. 
Importantly, these different mechanistic possibilities make a singular 
causal connection between gunshot and victim's death more or less 
likely. For example, coroners will probably be quite confident that the 
bullet killed the victim if they find that it went straight to the victim's 
heart. They will probably be less confident if they discover that the 
bullet merely damaged some muscle fibers. These conclusions seem 
warranted because different causal mechanisms imply different causal 
strengths. Bullets hitting hearts are much more lethal than bullets only 
damaging muscle fibers. 

Knowledge about different causal mechanisms paths can help in the 
assessment of singular causation not only because different mechanism 
paths may differ in their causal strengths. Different mechanism path-
ways also may differ in their in causal latencies, which is also a relevant 
factor for assessing singular causation relations (cf. Stephan et al., 2018, 
2020). For example, bullets going directly to a victim's heart not only 
have high causal strength, they also manifest their lethal capacity very 
fast. A short causal latency makes it more likely that a target cause 
actually caused the target effect because such causes leave less room for 
alternative causes to preempt them (see also Lagnado & Speekenbrink, 
2010). Consider a situation in which coroners not only discover that the 
victim had been hit by a bullet, but also find traces of poison in the 
victim's mouth. Was being hit by the bullet or being poisoned the cause 
of the victim's death? Discovering that the bullet hit the victim's heart 
should make it more likely that the bullet instead of the poison caused 
the victim's death because the short causal latency associated with 
bullets hitting hearts probably left little time for the poison to take effect. 

A causal model representing a case in which a reasoner knows that 
the causes C and A of E generate E via different possible mechanisms is 
shown in Fig. 2C. Unlike in the previous model shown in Fig. 2B, the 
causal mechanism variables MC and MA this time represent ternary 
variables that can either be absent (0) or present in one of two different 
alternative states (1 vs. 2). In this causal model, C and A's causal arrows 
are assigned two separate causal strength values, wcmc1 and wcmc2, rep-
resenting the strengths of the causes generating values of 1 or 2 in the 
connected mechanism variables. Similarly, the mechanism nodes MC 
and MA are assigned two different causal strength parameters. For 
example, the strength parameter wmc1e denotes the strength with which 
MC = 1 causes E, and the strength parameter wmc2e denotes the strength 
with which MC = 2 causes E. 

In our experimental scenario, this causal model was implemented by 
the two different possibilities of how emergency calls from the castles 
could be forwarded to the King's palace at the intermediate stations (see 
Fig. 3). Subjects learned that one possibility are telegraphs (MC = 1 or 
MA = 1) and that an alternative back-up possibility are pony riders 
(MC = 2 or MA = 2), which would only be sent out on occasions with 
insufficient electricity supply for the telegraph towers. We assumed that 
telegraph towers would intuitively convey the impression of a fast and 
strong causal process, while pony riders would be considered as a 
relatively slow causal process. Our scenario description also mentioned 
that pony riders may fail to reach the palace because they tend to get 
murdered by bandits living in the forests. This information was supposed 
to convey the impression of a lower causal strength of the pony riders. 
Using this information about telegraphs and pony riders, we aimed to 
establish a causal model in which each of the two possible causes of E 
operates via one mechanism path that is “superior” on both relevant 
dimensions, causal strength and causal latency. Our reason for doing so 
was that we wanted to have a case in which information about one of 
different possible causal mechanism paths is clearly more useful and 

relevant than information about another path, analogous to the bullet 
example where the observation that the bullet struck the victim's heart 
should lead to much higher confidence that it was the singular cause of 
death than the observation that the bullet merely damaged some muscle 
fibers. Our goal here was not to pit causal latency and strength against 
each other, which was systematically done in Stephan et al. (2020) but 
to establish clearly “superior” and “inferior” alternative mechanism 
paths (for an overview on the role of time in causal learning and 
reasoning, see Buehner, 2017). 

To illustrate how our model works for cases with different possible 
causal mechanisms, we assume that C and A, the two castles in our 
scenario, are two equivalent competing causes of E whose parameters 
are matched: wcmc1 = wama1, wcmc2 = wama2, wmc1e = wma1e, wmc2e =

wma2e, and so on (see Fig. 2C). Importantly, we assume that the causes’ 
mechanism paths via MC = 1 and MA = 1 are stronger and faster than the 
alternative mechanism paths leading to E via MC = 2 and via MA = 2. 

Fig. 4A shows the model predictions for 28 different singular ob-
servations that we tested in Experiment 1. The test cases are listed on the 
x-axes in the form of neuron diagrams. Green and crossed-out nodes 
denote active and inactive variables, respectively, and variables whose 
status is unknown are depicted in black. Green mechanism nodes with a 
bold contour mean that a telegraph tower is active, the superior mech-
anism component with higher causal strength and shorter causal la-
tency. Green nodes with a regular contour mean that a pony rider 
instead of a telegraph was sent. Asterisks mark the target cause c. We 
chose this large set of test cases because it allows us to systematically test 
the different components of our model. The set of test cases is divided 
into five different segments. In all test cases of the first segment the 
alternative cause A fails to activate its mechanism, while in all cases of 
the last segment the target cause C fails to activate its mechanism; the 
cases in the last segment simply mirror those of the first segment. These 
cases were predicted to elicit the most extreme ratings because we ex-
pected that the singular cause of the effect can be determined with 
certainty in these cases. For all test cases in the first segment in which it 
was observed that the pigeon sent out from the “competing” castle failed 
to reach its intermediate station, the competing castle can be ruled out as 
the singular cause of the alarm in the palace. As we have seen above, our 
model predicts for such cases that it must have been the target castle that 
caused the alarm in the King's palace, irrespective of what else is known 
about the status of the target cause's intermediate mechanism variables. 
Subjects’ judgments should therefore remain uninfluenced by the in-
formation about the states of the other variables. For example, in test 
case 01 it is observed that the Western castle succeeded in activating its 
superior mechanism component, the telegraph tower, while it merely 
succeeded in activating its weaker and slower mechanism component, a 
pony rider, in test case 02. Our model predicts that this difference should 
be irrelevant since the competing Eastern castle can be ruled out as the 
singular cause of the observed alarm in the King's palace. As we have 
seen above, Equation (1) yields values of 1.0 in these cases because the 
strength parameter of the alternative cause takes on a value of 0 in cases 
in which it fails to activate its mechanism variables. We included test 
cases like those in segments 1 and 5 because they allowed us to test if 
reasoners understand that otherwise crucial differences can be irrele-
vant under certain conditions. 

The third (middle) segment consists of test cases for which the same 
information is given for the target and the alternative cause, which is 
why we called them “symmetric” test cases. In these cases, our model 
predicts maximal uncertainty (i.e., ratings of 0.5) about whether the 
target cause was the singular cause of the effect. Importantly, this pre-
diction of maximal uncertainty for the symmetric cases is made by our 
generalized power PC model of singular causation judgments because it 
incorporates the possibility of causal preemption, captured by wc × wa ×

α in Equation (1). For example, on an occasion on which it is known that 
both castles sent a pigeon, both intermediate stations sent a telegraph, 
and an alarm occurred in the palace, our model predicts that there is a 
fifty-fifty chance that the alarm was caused by the target castle (or by the 
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competing castle). This prediction rests on the assumption that, in our 
scenario, the relevant causal parameters, strength and causal latency, 
are equal for the two candidate causes C and A. The reason why we 
included these symmetric test cases is that they best distinguish the 
predictions of our model from those from its predecessor, the “standard” 
power PC model of causal attribution proposed by Cheng and Novick 
(2005) (see also Stephan et al., 2020; Stephan & Waldmann, 2018). The 
predictions that the standard model would make for our test cases are 
shown in Fig. 4B. As can be seen there, a consequence of neglecting 
causal preemption is that that this would lead to the prediction of a 
target cause preference (or target cause bias). A comparison of the 
predictions that the two models make for the symmetric test cases of the 
third segment shows that this target cause preference is particularly 
pronounced for the symmetric test cases. 

The most complicated cases of our test set, which also best demon-
strate the relevance of knowledge about different mechanism pathways, 

are those in segments 2 and 4 (test cases 07 to 12 and test cases 17 to 22) 
in Fig. 4. These test cases are computationally more demanding because, 
unlike those in segments 1 and 5 for example, reasoners here need to 
integrate and aggregate causal strength and latency parameters to make 
a judgment, and sometimes even need to consider base rates. The spe-
cific parameter values we used to compute the predictions were chosen 
based on our own intuition about the experimental scenarios and the 
results of a pilot study in which we pre-tested our materials. The data 
and results of that pilot study can be accessed via our online repository 
at https://osf.io/325pr/. An R-Script that can be used to reproduce the 
model predictions for all cases, or to explore how the predictions change 
for different parameter values is provided at https://osf.io/ud3qb/. 

We will now illustrate in more detail how the model works using the 
test cases of segment 2 (test cases 07 to 12). The test cases in segment 4 
(test cases 17 to 22) mirror those of segment 2, and our model here 
predicts the inverse ratings of segment 2. We assume in our illustration 

Fig. 4. Singular causation predictions of different models for the 28 singular observations tested in Experiment 1 (A - C), and human singular causation judgments (D 
- E). Note. The “*” in the causal diagrams listed on the x-axes mark the target cause c. In panel D, red circles represent means, crosses represent medians, and error 
bars are 95% CIs. In panel E, bold lines represent means and faint lines represent individual ratings. 
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that the target cause marked by the asterisks in the neuron diagrams in 
Fig. 4 represents the Western castle of our scenario. Our focus will be on 
the logic behind the model predictions. A supplementary document in 
which we provide a step by step calculation of the predictions can be 
found at https://osf.io/wxnvh/. 

We first illustrate the predictions for test cases 07 and 08. As can be 
seen in Fig. 4A, our model predicts that reasoners should be more 
confident that the Western castle caused the alarm in the King's palace 
for test case 07 than for test case 08. In both cases, it is unknown whether 
the two castles sent out a pigeon, and whether the intermediate stations 
of the competing Eastern castle were active. However, for test case 07 it 
is observed that the Western castle succeeded in activating its superior 
mechanism component, the telegraph tower, whereas it merely 
managed to activate the pony station in test case 08. From the observed 
activity of the Western castle's intermediate stations in test cases 07 and 
08, it can first diagnostically be inferred that the Western castle must 
have sent a pigeon on these occasions, P(C = 1|MC = 1 ∧ MC = 2) = 1. 
Furthermore, since the only cause of activity of the intermediate stations 
are their respective castles, the probability that the activity of the 
Western telegraph tower in test case 07 and the Western pony station in 
test case 08 are caused by the Western castle, P(c → mC = 1|mC = 1) or P 
(c → mC = 2|mC = 2), are also 1.0. This is the case in our scenario 
because the castles are considered to be necessary causes of their in-
termediate stations. In a next step, it thus needs to be determined how 
likely it is that the telegraph (test case 07) or the pony rider (test case 08) 
caused the alarm. This probability needs to reflect the possibility that the 
competing castle could have sent a pigeon, and that its intermediate 
station could have sent a telegraph or a pony rider. The exact proba-
bilities of these events depend on the parameter values of the causal 
model, that is, the base rate of castle activity, the strength with which 
the castles activate telegraphs or pony riders, and the probability that 
one of them is causally preempted by the mechanism variable of the 
competing cause. The probability that the target Western castle caused 
the alarm will become smaller, the higher these probabilities are. 
However, higher singular causation ratings for test case 07 than for test 
case 08 will be predicted as long as it is assumed that telegraphs (test 
case 07) have a higher causal strength and shorter causal latency than 
pony riders (test case 08). 

It can be seen in Fig. 4A that the singular causation prediction for test 
case 09 is a little bit lower than the one for test case 07 but higher than 
for test case 08. The prediction for test case 09 is lower than for test case 
07 because for this test case it is observed that the competing castle 
actually sent a pigeon. In test case 07, it is possible that the competing 
castle remained inactive, which also decreases the possibility that it 
caused the alarm in the palace. For test case 09, by contrast, this pos-
sibility does not exist. Here, the competing castle's base rate needs to be 
neglected, which increases the probability that the competing castle 
caused the alarm, and simultaneously decreases the probability that the 
target castle caused the alarm. The magnitude of this decrease between 
test case 07 and 09 depends on the size of the competing castle's base 
rate parameter. If the competing castle always sent a pigeon, that is, if its 
base rate was 1.0, identical predictions would result for the two cases. 
Finally, the fact that, unlike in test case 07, the target castle is present in 
test case 09 does not impact on the difference between the predictions 
for test cases 07 and 09. The reason is that the observed activity of the 
target castle's telegraph tower in test case 07 implies that the target 
castle must have sent a message. 

For test cases 10 and 11, our model makes identical predictions, 
although the observed events are not identical.2 Importantly, the fact 
that the predictions are the same for these two cases is independent of 
the specific parameter values that we choose; they are identical because 
the candidate causes in our scenario are necessary causes of their 

intermediate mechanism variables. The only difference between test 
cases 10 and 11 is that the states of the two castles remain unobserved in 
test case 11. However, since in test case 11 the intermediate stations are 
active and because these activations can result only if the castles sent a 
pigeon, the activity of the two castles can be inferred with certainty.3 

Test case 11 again illustrates that the probability of singular causation, P 
(c → e|e, mC = 1, mA = 2) and the diagnostic probability of the presence 
of the cause, P(c|e, mC = 1, mA = 2), are not identical. In test case 11, the 
presence of the target cause can safely be inferred from the presence of 
its mechanism variable, but it is not certain that the target cause was the 
singular cause of the effect. To see how the two measures differ for all of 
our test cases of Experiment 1, a supplementary file in which we pit 
singular causation predictions and diagnostic probability against each 
other is provided in our online repository at https://osf.io/3bwyv/. 

The prediction with the lowest value in segment 2 is made for test 
case 12. This is a test case in which both castles sent out a pigeon, the 
Western intermediate station sent out a pony rider, but it is unknown 
whether the Eastern intermediate station sent a telegraph or a pony 
rider, or failed to become active. The reason why this case receives the 
lowest predicted value of the set is that we set the causal strengths be-
tween the castles and telegraph towers (wcmc1 in Fig. 2) to a high value. It 
is thus very likely that the competing Eastern castle successfully acti-
vated its superior mechanism component, the telegraph tower. As the 
target Western castle's intermediate cause would in this case compete 
with a much stronger and faster intermediate cause (Western pony rider 
vs. Eastern telegraph), our model predicts that the probability that the 
Western castle caused the alarm in the palace should be relatively low. 

4. Constraints on the utility of mechanism information 

So far we have shown why mechanism information is helpful for the 
assessment of singular causation. However, our model can also be used 
to identify factors imposing constraints on the usefulness of mechanism 
information. 

4.1. Intersecting causal mechanisms 

One such factor is whether the potential causes of the target effect 
operate via non-intersecting, independent, or via intersecting, depen-
dent mechanisms paths. In the first three causal models shown in Fig. 2 
the potential causes operate via non-intersecting paths. The causal 
model in Fig. 2D represents instead a scenario in which A's mechanism 
paths intersects with C's. Intersecting causal mechanisms can reduce the 
utility of mechanism information in the assessment of singular causa-
tion. For example, in a situation in which the causal model shown in 
Fig. 2D represents the mechanisms underlying the causal relations, 
observing that the target cause's mechanism component was active in a 
singular case provides no further information about whether c caused e. 
Since E has no proximate cause other than MCMA in this case, observing e 
diagnostically implies MCMA = 1. Observing MCMA = 1 does not give 
further evidential support for the hypothesis that c caused e. 

As a concrete example, consider the version of our experimental 
scenario that we used in Experiment 2. The two scenarios and their 
causal structures are illustrated in Fig. 5. The non-intersecting mecha-
nisms condition is shown in Fig. 5A. The scenario description here was 
very similar to the one of Experiment 1, except that this time we only 
introduced the telegraph towers as intermediate mechanism compo-
nents. In the non-intersection mechanisms scenario instantiating the 
causal model shown in Fig. 2B, the Western and the Eastern castle each 
transmit their emergency signals via their own intermediate telegraph 
towers. The intersecting-mechanism scenario instantiating the causal 

2 We thank an anonymous reviewer for pointing out that it is important to 
elaborate why identical predictions result for these cases. 

3 This is not the case for non-necessary causes, that is, for cases in which a 
cause's direct child variables have alternative causes. We will discuss such cases 
further in the section about intersecting causal mechanisms. 
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model shown in Fig. 2D is illustrated in Fig. 5B. Here, the intermediate 
telegraph tower of the Eastern castle, corresponding to node MA in the 
causal model, cannot send its telegraphs directly to the palace, 

corresponding to node E, but has to forward them to the telegraph tower 
shared with the Western castle, represented by node MCMA. To see how 
intersecting mechanisms affect the utility of mechanism information, we 

Fig. 5. Illustrations of the causal structures and their components in the non-intersecting (a) and intersecting mechanisms (b) conditions that were included in the 
instructions of Experiment 2. 

Fig. 6. Illustration showing how the way a cause's global strength (wc) is distributed across its path components (wcmc and wmce) affects the utility of mechanism 
information. Note. The causal models in A and B represent two cases in which the variables C in the two models have identical global strengths wc = wcmc⋅wmce, but 
differ in how wc is distributed across its components wcmc and wmce. A: The first arrow connecting C and MC is stronger than the second, that is, wcme > wmce. B: The 
second arrow connecting MC and E is stronger than the first, that is, wmce > wcmc. C: Predictions of the generalized power model of singular causation judgments for 
the two cases. The red curve shows the predictions for P(c → e|c, a, e) under the two causal models if MC is unobserved. In this case, the strength parameter entering 
into the equation is wc. The blue and green lines show how the probability that c caused e changes upon observing MC = 1 under the two different causal models. The 
blue curve represents the causal model shown in A and the green curve represents the causal model shown in B. 

S. Stephan and M.R. Waldmann                                                                                                                                                                                                            



Cognition 218 (2022) 104924

10

assume that the target cause is the Western castle. We now observe that 
an alarm occurred, that both castles sent a pigeon, but that the status of 
the telegraph towers is unobserved. Our model predicts that the addi-
tional information that the telegraph tower of the Western castle actu-
ally sent a telegraph on the given occasion should increase reasoners’ 
confidence that the Western castle caused the alarm in the case of non- 
intersecting, but not in the case of intersecting mechanisms. In the latter 
case, observing MCMA = 1 is predicted to be irrelevant because its 
presence is diagnostically implied by the observed presence of the effect. 
Of course, the causal model shown in Fig. 2D in which A fully exerts its 
influence via C's mechanism path is an extreme case. We chose this case 
because it best illustrates the general problem for singular causation 
judgments arising from intersecting, dependent causal mechanisms. 

4.2. Distribution of overall causal strength across causal path components 

Another factor constraining the utility of mechanism information 
that we tested in Experiment 3 is the way in which the strength of the 
target cause is distributed across its different mechanism path compo-
nents. Consider again the mechanism model shown in Fig. 2B. An 
implication of wc being equal to wcmc⋅wmce is that the probability that c 
caused e can substantially vary depending on the differences between 
wcmc and wmce when MC = 1. Fig. 6 shows two causal models that we 
contrasted in Experiment 3. In both cases C's overall causal strength 
wc = wcmc⋅wmce is assumed to be identical, but differently distributed 
across its two paths components. In Fig. 6A the high-strength component 
is the root link connecting C to MC, whereas in Fig. 6B the high-strength 
component is the terminal path connecting MC to E. 

As an example, consider the version of our fictitious scenario that we 
used in Experiment 3. The Western and Eastern castles can send out 
pony riders to the palace, but the pony riders are unable to cover the 
whole distance. They can only reach the intermediate pony stations 
positioned halfway. These intermediate stations then send out fresh 
pony riders who cover the remaining distance. Pony riders not always 
make it to their destination, however, because they are attacked by evil 
robber barons. In one version of the scenario that instantiates the causal 
model shown in Fig. 6A, the pony riders sent out from their castles get 
attacked only 10% of the time, implying a causal strength of 0.9 for wcmc, 
whereas those pony riders riding from the intermediate stations to the 
palace get attacked 90% of the time, implying a strength of 0.1 for wmce. 
In the other version of the scenario that instantiates the causal model 
shown in Fig. 6B, these values were simply reversed, wcmc = 0.1 and 
wmce = 0.9. In both cases, the overall strengths of the castles are iden-
tical, for example, wc = wcmc⋅wmce = 0.09. 

Despite identical global strength values for wc under the two causal 
models, P(c → e|c, mC, a, e) turns out to be higher under the causal model 
in which the strong component of the causal path is the terminal link (B). 
Fig. 6C shows the predictions of our model for these situations across the 
range of possible strength values for the competing cause A. First, 
consider a case in which both castles sent out a pony rider but it is un-
known if these riders reached their intermediate stations, i.e., MC = ? 
and MA = ?. The probability that an alarm e was caused by the target 
castle c in this case must be calculated based on C's overall strength 
parameter wc. In Fig. 6C, the probability of singular causation for this 
case is given by the red solid curve. The blue and green curves show how 
the probability changes upon observing that the target castle's inter-
mediate pony station sent out a rider, MC = 1, in the two different sce-
narios. As can be seen, observing that the target castle's intermediate 
station actually sent out a pony rider entails large differences for P 
(c → e|c, mC, a, e) in these two cases. While observing MC = 1 only 
slightly increases the probability that c caused e if the terminal link is 
weak (A), the probability increase is much higher if the terminal link is 
strong (B). Put less formally, our model captures the notion that the 
stronger the causal link connecting the target cause to its mechanism 
variable is, the less “surprised” we should be if we actually find this 
variable to be active in a given situation, and the less our confidence that 

c caused e should change. If we know that pony riders sent out from the 
castle often reach their intermediate station, the observation that this 
has actually happened should have relatively little influence on our 
confidence that the observed alarm was caused by the target castle. 

The example also demonstrates that causal mechanism information 
becomes less valuable the higher the target cause's overall strength wc is. 
The higher wc is, the less room there is for wcmc and wmce to differ, and the 
higher the strength of the link connecting C and its mechanism MC will 
be. The higher the strength of the root link is, the smaller the impact of 
observing MC = 1 will be. 

We will next present the results of three experiments in which we 
tested how mechanism information influences people's singular causa-
tion judgments. We evaluated to which extent people reason in accor-
dance with our model. 

5. Experiment 1 

Experiment 1 tested singular causation judgments for the causal 
structure shown in Fig. 2C, in which the different potential causes can 
generate the effect via different possible mechanisms. Using this causal 
model in combination with the 28 different test cases shown in Fig. 4, 
this experiment provides a comprehensive experimental test of the role 
of mechanism information in people's singular causation judgments. It 
allowed us to investigate all relevant components of our model in a 
single study. 

5.1. Methods 

5.1.1. Participants 
One hundred subjects (Mage = 33.04, SDage = 10.74, 55 male, 43 fe-

male, two non-binary) participated in this online experiment and pro-
vided valid data. Subjects were recruited from the British online panel 
Prolific (https://www.prolific.co). The inclusion criteria were a mini-
mum age of 18 years, a 90 percent approval rate of subjects’ partici-
pation in previous studies, “secondary school” as the minimum level of 
education, and English as native language. To minimize the risk of 
distraction, subjects were asked to participate only via desktop PC or 
laptop and not via tablets or smartphones. Prolific workers who had 
participated in our pilot study were excluded from participation. Sub-
jects were paid £ 2.00 for their participation. 

5.1.2. Design, materials, and procedure 
The study had a within-subject design in which the 28 test cases were 

presented one after the other in random order. A demo video of the study 
can be found at https://osf.io/ycv8u/. 

After subjects had read the scenario description about the medieval 
kingdom Tristonia (see Fig. 3), they had to pass a comprehension test 
probing their understanding of the relevant aspects of the scenario. 
Subjects could not proceed to the main task until they answered all in-
struction check questions correctly. 

Each of the 28 test cases was introduced by a short prompt asking 
subjects to study what had happened in Tristonia on the given day. The 
singular causation test question was presented on the same screen below 
the test case. Subjects were asked to indicate how strongly they believed 
that the alarm in the King's palace which occurred on that day was 
caused by the Western [Eastern] castle. Responses were given on an 
eleven-point rating scale whose endpoints were labeled “certain that it 
was not caused by this castle” and “certain that it was caused by this 
castle” (the midpoint was labeled “50:50”). Whether the target cause 
was the Western or the Eastern castle was counterbalanced between 
subjects. After subjects had finished all observations, they provided 
demographic information and then finished the study with a short 
debriefing screen. 
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5.2. Results and discussion 

Subjects’ mean singular causation judgments are shown in Fig. 4D. A 
table with the descriptive statistics can be found at https://osf. 
io/v9se4/. As can be seen in Fig. 4D, subjects’ singular causation judg-
ments overall followed the predictions of our generalized power PC 
model of singular causation shown in Fig. 4A. Fig. 4A also includes the 
results of model fits that we computed. Overall, we observed a high fit 
between model predictions and singular causation judgments. In 
particular, we found that ratings tended to change when the model 
predicts they should change, and also that they tended not to change 
when the model predicts that they should not. For example, for the test 
cases in the first and last segment, for which our model predicts that 
subjects should consider different values of the target cause's mechanism 
variable to be irrelevant, we found that subjects indeed tended to 
conform to this prediction. An exception here was test case 06 in which 
the status of the target castle and its mechanism variable both remained 
unobserved. While subjects gave almost identical mean ratings for the 
first five test cases, M1:5 = 0.9, 95% CI[0.86, 0.95], the mean rating for 
test case 06 (M6 = 0.84, 95% CI[0.79, 0.88]) was slightly lower, 
ΔM = 0.07, 95% CI[0.03, 0.11]. An analogous pattern was observed in 
the last segment of test cases. Here, the mirrored test case of test case 06 
in segment 1, test case 23, tended to receive slightly higher ratings, 
ΔM = 0.04, 95% CI[0.001, 0.07]. This pattern suggests that unobserved 
variable states tended to elicited uncertainty in some participants even 
in situations in which this should not be the case. 

A comparison between the model predictions for the test cases in 
segments 2 and 4 and the ratings shows that the model overall also 
accurately predicts subjects’ singular causation judgments for these 
computationally more demanding test cases. For example, subjects’ 
mean judgments tended to follow the predicted u-shaped trend for test 
cases 07, 08, and 09 in segment 2, and also the predicted inverse u- 
shaped trend for test cases 20, 21, and 22 in segment 4. Polynomial 
contrast analyses confirmed that the quadratic trends in segment 1 and 4 
were significant. For the quadratic trend in segment 1, the estimate was 
Dquadr. = 0.13, 95% CI[0.06, 0.2] (t(198) = 3.6, p < .0005), and the es-
timate for the inverse quadratic trend in segment 4 was Dquadr. = − 0.16, 
95% CI[− 0.22, − 0.09] (t(198) = − 4.5, p < .0001). Importantly, these 
trends document that subjects’ singular causation judgments expressed 
knowledge about different possible mechanism paths via which a cause 
can lead to its effect. In line with the model predictions for segments 2 
and 4, subjects tended to give higher ratings when they observed that 
the target cause succeeded in activating its mechanism path with higher 
causal strength and shorter causal latency. However, one characteristic 
feature of the predicted u-shaped trend that was not observed in sub-
jects’ ratings is the predicted difference between test cases 07 and 09 
(and, analogously, between test cases 20 and 21). Our model predicts 
higher ratings for test case 07 than for test case 09. The reason for this 
prediction is that it is unknown in test case 07 if the competing castle is 
actually active, whereas it is observed to be active in test case 09. In test 
case 07, it is less likely that the competing castle caused the effect 
because it is possible that it was not even active. In test case 07, but not 
in test case 09, our model incorporates the competing castle's base rate, 
whereas our subjects seemed to have had the tendency to neglect it. 

To further evaluate to which extent subjects’ ratings reflected in-
formation about different possible mechanisms pathways, we next 
compared the mean singular causation ratings with those that we would 
expect if the judgments had not been sensitive to mechanism differences. 
We therefore computed predictions for a model in which the strengths 
and the latencies of the mechanisms were identical to compare them 
with the normative model. Thus, more specifically, we simulated how a 
reasoner would respond who does not differentiate between pony riders 
and telegraph towers. The predictions for this scenario are shown in 
Fig. 4C. As can be seen, this model fails to predict subjects’ mean ratings 
for segments 2 and 4 (though see below), whereas our model predicts the 
observed trend of the means in these segments well. This analysis thus 

provides further evidence that, at least on the aggregate level, reasoners 
tend to be sensitive to causal mechanism information and to differences 
between different possible mechanism paths. 

Another crucial feature of our generalized power PC model of sin-
gular causation judgments that distinguishes it from Cheng and Novick's 
(2005) standard power PC model of causal attribution is that it in-
corporates the possibility of causal preemption of the target cause by 
alternative causes of the effect. One implication of this feature is that the 
generalized model predicts invariant ratings of 0.5 for all symmetric test 
cases that are listed in segment 3. As Fig. 4D shows, subjects’ judgments 
followed this prediction. The possibility of causal preemption seems to 
be particularly salient in these symmetric test cases, but preemption of 
the target cause is also possible in all the test cases of segments 2 and 4. 
To better assess to which extent subjects’ judgments reflect the possi-
bility of preemption in these cases, we compared their judgments not 
only to our model, but also to the predictions of the standard model, 
which neglects causal preemption. The predictions of the standard 
model are shown in Fig. 4C. This model makes similar (but slightly 
higher) predictions as our preemption-sensitive model for the test cases 
of segment 2, but its predictions are very different for the mirrored test 
cases of segment 4. While our model predicts the inverted pattern of 
segment 2 for these test cases, the standard model neglecting causal 
preemption does not. Comparing the predictions of the models with 
subjects’ mean singular causation judgments demonstrates that the 
ratings followed our generalized model. The ratings suggest that sub-
jects took the possibility of causal preemption into account, even in the 
more complicated asymmetric test cases. 

A further finding of the study is that the mean singular causation 
judgments were overall less extreme than the model predictions. They 
show the pattern of “weak inferences”, a tendency to respond too closely 
to the midpoint of the scale, which has previously also been documented 
for other types of causal inferences (see, e.g., Meder et al., 2009; Rott-
man & Hastie, 2016; see Rottman & Hastie, 2014, for an overview). In a 
final analysis, we therefore wanted to see whether these weak inferences 
were obtained because all subjects generally responded too weakly, or 
because there are different clusters of subjects who differ with respect to 
the information they used to make their judgments. Subjects individual 
ratings are shown in Fig. 4E, where it can be seen that they tended to 
vary a lot. The variability was highest in segments 2 (SD = 0.21) and 4 
(SD = 0.19), which were those for which the predictions of the different 
models shown in Fig. 4A-C diverged particularly strongly. 

To see whether subjects used different reasoning strategies, we 
conducted a model-based clustering analysis. We included our gener-
alized model (Fig. 4A), the standard model neglecting preemption 
(Fig. 4B), the predictions of a model neglecting differences between the 
different mechanism paths (Fig. 4C), and an additional random choice 
model. The criterion we used to assign subjects to one of the different 
models was the minimum mean distance of the singular causation 
judgments from the predictions of the different models. This analysis 
identified three distinct groups of participants (see Fig. 4E), which in-
dicates that subjects might indeed have relied on different reasoning 
strategies. The largest cluster (comprising 50% of participants) consisted 
of subjects whose singular causation judgments were best described by 
our generalized model (red curve; r = .99, RMSE = .07). The second 
largest cluster (comprising 40% of participants) was best described by 
the cognitively less demanding model that does not take differences 
between the causes’ different mechanism paths into account (blue curve; 
r = .99, RMSE = .08). Referring to our experimental scenario, this 
cluster thus represents subjects who tended not to differentiate between 
telegraphs and pony riders. One explanation for the existence of this 
cluster is that some participants may have considered it too difficult to 
incorporate information about mechanism path differences, and there-
fore relied on a cognitively less demanding strategy that still in-
corporates information about the presence or absence of mechanism 
variables, but not information about different active variable states (and 
their different strengths and causal latencies). The behavior of ten 

S. Stephan and M.R. Waldmann                                                                                                                                                                                                            

https://osf.io/v9se4/
https://osf.io/v9se4/


Cognition 218 (2022) 104924

12

percent of our participants was best described by the random choice 
model (green curve), and no subgroup of subjects was identified that 
systematically neglected the possibility of causal preemption. 

A concern that readers might have about this experiment is that we 
did not have our participants learn the exact parameter values on which 
the model predictions were based (see Fig. 2C). We thus could have 
obtained even better, or much worse, model fits if we had used other 
parameter values.4 Yet, we do not think that our modeling decision 
undermines the central conclusions that can be drawn from the study. 
Our goal was to test if subjects incorporate and integrate information 
about causal mechanisms, and whether their singular causation judg-
ments are sensitive to differences between different possible mecha-
nisms paths. We think that this study allowed us to test these questions, 
even if subjects’ intuitions about the exact parameter values may have 
differed to some degree from the ones we used to compute the pre-
dictions. Importantly, the predictions for the test cases in the first and 
last segment, which test whether subjects use mechanism information to 
rule out potential causes, are insensitive to parameter value changes. 
Furthermore, the u-shaped and inverted u-shaped patterns of pre-
dictions for test cases 07, 08, and 09 in segment 2 and for test cases 20, 
21, and 22 in segment 4 are also relatively robust to parameter value 
changes. We used these test cases to test if subjects were sensitive to 
differences between possible mechanism paths. Importantly, these cases 
allow us to test this question as long as the strength parameter values 
assigned to MC = 1 and MA = 1 are higher than those used for MC = 2 
and MA = 2. The telegraph towers and pony riders described in our 
experimental scenario seemed to have successfully elicited these in-
tuitions, at least in a majority of subjects. Another parameter-size in-
dependent characteristic of our model, but not of the standard model 
neglecting causal preemption, is that it makes inverse predictions for the 
mirrored test cases. Subjects’ singular causation ratings clearly showed 
this pattern. 

In sum, the results of this experiment show that, on average, rea-
soners incorporate mechanism information in a quite elaborate way, 
mostly in line with the full generalized power PC model of singular 
causation judgments. A slight majority of subjects seemed to have un-
derstood that knowledge about different mechanism pathways is rele-
vant for the assessment of singular causation because it allows them to 
use more specifies values of the relevant parameters. Although subjects’ 
mean ratings were overall less extreme than the model predictions, the 
results show that many subjects considered and systematically inte-
grated a substantial amount of information to derive their judgments. 
However, we also found that a relatively large number of subjects ten-
ded to use a simpler, less demanding reasoning strategy that neglects 
differences between the different mechanism paths via which a cause 
can generate its effect. This finding is in line with previous research 
showing that reasoners often seem to be driven by a need to reduce 
computational effort (e.g., Fernbach & Rehder, 2013; Waldmann & 
Hagmayer, 2001). However, even these subjects still considered mech-
anism information to be crucial for the assessment of singular causation. 
For example, subjects in this group still used mechanism information in 
segments 1 and 5 to eliminate one of the potential causes of the target 
effect. 

6. Experiment 2 

In Experiment 2 we tested whether reasoners understand that causal 
mechanism information tends to be less helpful when the potential 
causes operate via intersecting rather than non-intersecting, indepen-
dent mechanism pathways. The two causal structures that we tested are 
the ones that we presented in our theoretical analysis (see Fig. 2B and 
D). 

We compared two test cases in this study (see Fig. 7), one in which 

the mechanism variables were unobserved (first row of illustrations in 
Fig. 7) and one in which the target cause's mechanism is observed to be 
active (second row of illustrations in Fig. 7). The model predictions for 
the test cases are shown in Fig. 8A. For the non-intersecting-mechanisms 
condition (blue), the predictions were obtained by setting the strength 
parameters of the causal structure to wcmc = wama = 0.6 and wmce =

wmae = 0.9. While the strength assigned to the telegraph towers (wmce 

and wmae) was the same as in Experiment 1, we this time assumed higher 
causal strengths between castles and telegraph towers (wcmc and wama) 
because we hypothesized that leaving out the back-up pony riders makes 
the causal paths leading from the castles to the towers appear more 
“reliable”. Furthermore, since we only mentioned the telegraph towers 
(i.e., the causal mechanisms of the competing causes that have the same 
causal latency), the α parameter of our model is set to 0.5, reflecting 
uncertainty about the causes’ preemptive relation whenever both causes 
are simultaneously sufficient to generate the effect. For the first test case, 
in which it is observed that both castles sent a pigeon while it is unclear 
whether their towers sent telegraphs, the model predicts uncertainty 
about whether the target Western castle caused the alarm. For the sec-
ond test case, in which the Western telegraph tower is active, the 
probability that the Western castle caused the alarm is higher because, 
instead of wc = wcmc⋅wmce, wmce needs to be used as the target cause's 
strength parameter. 

The critical condition is the intersecting-mechanisms condition, in 
which the observation that the Western telegraph tower is active should 
be irrelevant. Within the given causal structure, observing the alarm in 
the King's palace implies that the Western telegraph tower (node MCMA 
in the causal model shown in Fig. 2D) must have been active, either 
because it was caused by the Western castle or by the telegraph tower of 
the Eastern castle. Observing that this telegraph tower is active on an 
occasion on which an alarm occurred in the palace should therefore not 
influence singular causation judgments. Subjects’ singular causation 
judgments for both test cases should correspond to the probability that 
the target instead of the alternative cause activated the causes’ shared 
telegraph tower, represented by the mechanism variable MCMA, which 
can be calculated using P(c → mCMA|mCMA, c, a). The strength parameter 
values we used were wcmcma = wama = 0.6 and wmamcma = 0.77. We used a 
higher value for wmamcma because we thought that subjects might assume 
a higher causal strength between two telegraph towers than between a 
castle and a telegraph tower. α was set to 0.4, which expresses a small 
preemptive advantage of the target cause. This seems plausible because 
the alternative cause is only indirectly connected to MCMA via MA, which 
implies a longer causal latency. Inserting these values into our model, 
the probability that target the Western castle caused the observed alarm 
is P(c → e|e, c, a) = P(c → mCMA|mCMA, c, a) = 0.62. 

6.1. Methods 

6.1.1. Participants 
Eighty-eight subjects (Mage = 31.39, SDage = 11.47, 44 male, 43 fe-

male, one non-binary), recruited via Prolific, participated in this online 
experiment and provided valid data. The inclusion and exclusion criteria 
were the same as in the previous study. Subjects received £ 1.25 for their 
participation. The rationale behind the sample size was that it allows us 
to reliably detect the interaction effect resulting from the model pre-
dictions. The interaction effect shown in Fig. 8A corresponds to a dif-
ference of differences of about ΔD = 0.2. With a sample size of N = 88, 
the 95% CI for ΔD = 0.2 would on average be [0.09, 0.31], assuming 
that the SD of the singular causation ratings is 0.18 (which is the mean 
SD measured in Experiment 1). 

6.1.2. Design, materials, and procedure 
The study had a 2 (dependency of mechanisms: non-intersecting vs. 

intersecting mechanisms; between subjects) × 2 (observed singular case: 
[C = 1, MC = ?, E = 1, MA = ?, A = 1] vs. [C = 1, MC = 1, E = 1, MA = ?, 
A = 1]; within subject) mixed design. A demo video can be found at htt 4 We thank Sam Johnson for pointing this problem out. 
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As in Experiment 1, subjects had to pass a comprehension test prior 

to the test phase. For this experiment it was particularly important that 
subjects understood the instructed causal structure precisely, especially 
that the effect cannot be generated by any other than the instructed 
causes. One comprehension check question therefore asked subjects to 
indicate the probability of an alarm in the palace if none of the castles 
sent an emergency call, and all the telegraph towers remained inactive. 
Subjects could only proceed to the test phase if they answered zero to 
this question. 

The presentation order of the two test cases was counterbalanced 
between subjects. Subjects indicated how strongly they believed that the 
alarm in the King's palace was caused by the Western castle. To prompt 
subjects to reason thoroughly about the cases, we this time also asked 
them to provide brief justifications for their ratings. 

Next we asked subjects an additional diagnostic probability query in 
the end, which referred to the castles’ shared telegraph tower, MCMA. We 
again showed subjects the test case in which the state of the telegraph 
tower was unobserved (MCMA = ?), and asked them to indicate the 
probability that it is active in this case (MCMA = 1.0), P(mCMA|e). This 
question allowed us to see if subjects in the intersecting-mechanisms 
condition correctly inferred that observing the alarm implies that the 
telegraph tower is active. 

6.2. Results and discussion 

Fig. 8B shows the mean singular causation judgments. As can be seen 
there, we observed the expected interaction pattern. As predicted, when 
subjects in the non-intersecting-mechanisms condition saw the test case 
in which the status of the Western telegraph tower was unobserved 
(MC = ?), they were uncertain whether the Western castle had caused 
the alarm. They gave higher ratings, however, when they saw the test 
case in which the Western telegraph tower had sent a signal (MC = 1), 

MDiff = 0.36, 95% CI [0.27, 0.44]. The results in this condition replicate 
the finding of Experiment 1 that observed mechanism variables lead to 
increased confidence that a target cause was the singular cause of an 
observed effect. 

Subjects in the critical intersecting-mechanism condition gave higher 
ratings than subjects in the non-intersecting-mechanisms condition 
when the status of the Western telegraph tower was unobserved 
(MCMA = ?). Furthermore, in line with the model predictions, they gave 
lower ratings than subjects in the independent mechanisms condition for 
the test case in which the Western telegraph tower had sent a signal 
(MCMA = 1). 

Subjects thus demonstrated that they understood that the observed 
presence of a mechanism variable connecting a cause to its effect pro-
vides more support for a singular causal connection between target 
cause and effect when this mechanism operates independently of po-
tential alternative causes of the target effect. The interaction effect 
corresponded to the prediction, ΔD = 0.19, 95% [0.07, 0.31]. However, 
in contrast to the normative predictions, subjects in the dependent 
mechanism condition still increased their singular causation ratings 
upon observing MCMA = 1, MDiff = 0.17, 95% CI [0.08, 0.25]. Thus, their 
understanding of this situation was imperfect. 

One explanation for the observed confidence increase in the 
intersecting-mechanisms condition could be that some subjects did not 
understand that the Western telegraph tower must have caused the 
alarm on this occasion: P(mCMA|e) = 1.0 in this case. To check this 
possibility, we analyzed subjects’ ratings for the additional diagnostic 
probability query in which we asked them to indicate how likely it is that 
the Western telegraph tower is active. In line with what the causal 
structures imply, subjects in the intersecting-mechanisms condition 
gave higher ratings than subjects in the non-intersecting-mechanisms 
condition, MDiff = 0.73 − 0.49 = 0.24, 95% CI [0.14, 0.34], but their 
ratings were too low. We also found that the mean diagnostic probability 
rating of 0.73 resulted from two distinct group of subjects: Half of the 

Fig. 7. The two test cases shown to participants in the non-intersecting (A) vs. the intersecting mechanisms (B) condition of Experiment 2. Note. The diagrams below 
each test picture illustrate the instantiated variable values of the underlying general causal structure: Green nodes = active, and black nodes = unobserved. Subjects 
only saw the test pictures, but not these diagrams. 
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subjects gave correct ratings of 1.0, but the other half gave lower ratings 
and thus seemed to not have understood that E = 1 implies MCMA = 1. 
The majority of these participants reported to be uncertain (i.e., they 
gave ratings of 0.5). 

To see whether these subjects were responsible for the observed 
positive slope in the singular causation judgments in the intersecting- 
mechanisms condition (yellow line in Fig. 8B), we compared subjects 
who gave P(mCMA|e) ratings of 1.0 with those who provided values < 1. 
Fig. 8C shows that the difference in the singular causation ratings in the 
intersecting-mechanisms condition was indeed largely driven by sub-
jects who failed to realize that P(mCMA|e) = 1 (dark line). These subjects 
increased their confidence that c caused e upon observing MCMA = 1, 
MDiff = 0.75 − 0.49 = 0.26, 95% CI [0.14, 0.37]. There was no signifi-
cant increase for subjects who made correct diagnostic judgments, 
MDiff = 0.61 − 0.54 = 0.07, 95% CI [-0.04, 0.18]. The difference of 
differences was ΔD = 0.19, 95% CI [0.03, 0.34]. 

The results of this experiment show that reasoners are on average 
aware that the degree to which causal mechanism information supports 
singular causation judgments depends on whether the causal mecha-
nisms of the potential causes are statistically independent or not. Many 
subjects understood that observing independent mechanism variables is 
more useful than observing dependent mechanism variables that can be 

caused by alternative causes. Not all participants comprehended the 
different structures fully, though. Our results suggest that some rea-
soners seem to have difficulties realizing that observing E = 1 is of 
higher diagnostic value for the presence of the target mechanism if the 
causal mechanisms intersect, and that the explicit observation of the 
target mechanism therefore provides less support for the hypothesis of a 
singular causal connection between target cause and effect. 

7. Experiment 3 

The goal of Experiment 3 was to test if reasoners understand that the 
utility of observing a cause's mechanism variable also depends on how 
the cause's overall strength is distributed across its different mechanism 
components. The two causal models and the parameter values that we 
tested in this study are the ones that we presented in our theoretical 
analysis (see Fig. 6). If reasoners understand how the distribution of a 
target cause's overall causal strength wc across its path components (wcmc 

and wmce) affects the utility of mechanism information, subjects who 
learn that wmce is the strong component should increase their confidence 
that c caused e more upon observing MC = 1 than subjects who learn that 
wmce is the weak component. 

Fig. 8. Model predictions for and results of Experiment 2. Note. The results (panels B and C) show mean singular causation judgments. Error bars denote 95% CIs. 
Difference plots in the right area of each graph show the interaction effect. The diagrams on the x-axes show the test cases in the form of neuron diagrams (cf. Fig. 7). 
Green nodes = active variable, and black nodes = unobserved variable. Asterisks mark the target cause c. 
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7.1. Scenario and predictions 

The experimental scenario in this experiment only introduced pony 
riders as transmitters of emergency signals. It was pointed out that pony 
riders do not always reach their destinations because of occasional at-
tacks by evil robber barons living in Tristonia's forests and mountains. 
To convey the impression that path sections differ in causal strength, we 
introduced “high-danger zones” in which attacks by evil robber barons 
were particularly likely. The illustrations we used are depicted in Fig. 9. 
In the scenario instruction presented in the high-strength component =
terminal path condition (Fig. 9A), it was mentioned that 90 percent of 
pony riders sent out by their castles are attacked and murdered 
(implying a causal strength of wcmc = 0.10). Pony riders sent out from 
the intermediate stations were described as having only a ten percent 
risk of being attacked and murdered (i.e., wmce = 0.90). In the high- 
strength component = root path condition (Fig. 9B) the instructed risk 
values were reversed. 

As in Experiment 2, subjects were presented with two test cases, 
which are represented by neuron diagrams on the graphs’ x-axes in 
Fig. 10A-B. In one test case, subjects were informed that both castles had 
sent out a pony rider, but whether or not these pony riders arrived at 
their intermediate stations was unknown. In the other test case, subjects 
additionally learned that the target castle's intermediate pony station 
had sent out a pony rider. The model predictions are shown in Fig. 10A. 
They are based on the instructed causal strengths. The value of our 
model's α parameter was set to 0.5. Since the overall causal strengths of 

the causes are identical under the two instructed causal models (wc =

wa = 0.9⋅0.1 = 0.09), P(c → e|c, a, e) equals 0.5 for the first test case in 
which MC = ? and MA = ? Upon observing MC = 1, the probability that c 
caused e should increase more in the high-strength component = ter-
minal path than in the high-strength component = root path condition. 
In the former condition, the target causal strength inserted into the 
model becomes wmc = 0.9, while in the latter it becomes wmc = 0.1. 
Thus, P(c → e|c, mC, a, e) = 0.95 and P(c → e|c, mC, a, e) = 0.53 in the 
high-strength component = terminal path and the high-strength 
component = root path conditions, respectively. 

7.2. Methods 

7.2.1. Participants 
One hundred and sixty subjects (Mage = 33.02, SDage = 12.11, 61 

male, 82 female, one person indicated “other”) recruited via Prolific 
participated in this online experiment and provided valid data. Subjects 
received £ 1.25 for their participation. The rationale behind the sample 
size was that we intended to be able to reliably detect relatively small 
effects. Although our model predicts an interaction effect of Delta 
D = 0.47, we conservatively based our sample size calculation on a 
smaller interaction effect of Delta D = 0.1. With a sample size of N = 160 
the 95% CI for ΔD = 0.1 can be expected to be [0.02, 0.18] (assuming 
again SD = 0.18 for the singular causation ratings). 

Fig. 9. Scenario illustrations shown in Experiment 3. Note. A: Illustration shown in the ‘high-strength components = terminal paths condition’. B: Illustration shown 
in the ‘high-strength components = root paths condition’. 
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7.2.2. Design, materials, and procedure 
The study had a 2 (high-strength component of causal paths: root 

paths vs. terminal paths; between subjects) × 2 (observed singular case: 
[C = 1, MC = ?, E = 1, MA = ?, A = 1] vs. [C = 1, MC = 1, E = 1, MA = ?, 
A = 1]; within-subject) mixed design. A demo video of the procedure 
can be found at https://osf.io/fum5j/. 

The order in which the test cases were presented was counter-
balanced between subjects. After subjects had given their singular 
causation judgments, we asked them an additional question that allowed 
us to see if our causal strength manipulation was successful. We showed 
subjects again the test case in which the status of the competing castle's 
intermediate pony station is unobserved (the second case shown on the 
x-axes of Fig. 10A-B). We asked subjects to estimate the probability that 
the unobserved pony station sent out a pony rider in this case. If subjects 
correctly learned the instructed strength values, subjects in the high- 
strength component = root path condition should rate P(MA = 1) =
0.9, whereas subjects in the high-strength component = terminal path 
condition should rate P(MA = 1) = 0.1. 

7.3. Results and discussion 

Fig. 10B summarizes the results. For the first test case, participants in 
both conditions indicated to be uncertain (M = 0.494, 95% CI [0.458, 

0.530] vs. M = 0.510, 95% CI [0.474, 0.546] in the high-strength 
components = root paths and the high-strength components = termi-
nal paths conditions, respectively). Upon observing MC = 1 subjects in 
the high-strength components = terminal paths condition increased 
their singular causation judgments more than subjects in the high- 
strength components = root paths condition (M = 0.748, 95% CI 
[0.712, 0.783] vs. M = 0.616, 95% CI [0.580, 0.652]). The interaction 
effect was ΔD = 0.115, 95% CI [0.046, 0.184], which is smaller than 
predicted by the model. As in Experiments 1 and 2, subjects showed 
weak inferences, despite the fact that we explicitly instructed the rele-
vant causal strength parameters. 

Ratings for the additional question asking for the probability of 
MA = 1 are shown in Fig. 10C. Subjects in the high-strength components 
= root paths condition gave higher probability ratings (M = 0.631, 95% 
CI [0.563, 0.699]) than subjects in the high-strength components =
terminal paths condition (M = 0.268, 95% CI [0.216, 0.319]), 
Mdiff = 0.364, 95% CI [0.279, 0.448]), indicating an overall effective 
experimental manipulation: subjects who learned that the first causal 
links between the castles and their intermediate stations have high (i.e., 
0.9) causal strengths indicated much higher probabilities for MA = 1 
than subjects who learned that these initial links were weak. However, 
the differences between the conditions were smaller than expected 
based on the instructed parameter values. This, in turn, explains why the 

Fig. 10. Model predictions for and results of Experiment 3. Note. Error bars denote 95% CIs. The difference plots in A and B show the interaction effect. C: Ratings for 
the additional test question asking for the probability of the presence of the alternative cause's mechanism variable MA. The diagrams on the x-axes show the test 
cases in the form of neuron diagrams. Green nodes = active variable, and black nodes = unobserved variable. Asterisks mark the target cause c. 
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observed interaction effect for the singular causation ratings was weak. 
Moreover, we also observed large interindividual differences in these 
ratings, as shown by the jittered dots in Fig. 10C. 

To obtain further evidence that the observed interaction effect for 
subjects’ singular causation ratings is driven by subjects who reasoned in 
accordance with our model, we analyzed the correlation between sub-
jects’ P(MA = 1) ratings and their singular causation ratings. The ratio-
nale for this analysis was that subjects who think that the activation of 
the intermediate pony stations is unlikely should increase their singular 
causation judgments more when observing that the target castle's in-
termediate station had sent out a pony rider than subjects who think that 
activation of the intermediate pony stations is likely. We thus should see 
an overall negative correlation between P(MA = 1) and P(c → e|c, mC, a) 
ratings, which is what we found, r = − 0.174, 95% CI [− 0.320, 
− 0.0190]. 

In sum, the results of this experiment suggest that reasoners on 
average tend to understand that the way in which the causal strength 
between a target cause and its effect is distributed among its different 
causal-path components constrains the utility of mechanism information 
for singular causation judgments. Subjects tend to understand that if a 
cause with an overall strength of wc = wcmc⋅wmce is likely to activate its 
mechanism component (high value of wcmc), observing that its mecha-
nism component is indeed active is less relevant for the singular 
causation judgment than if a cause only rarely activates its mechanism 
component (low value of wcmc). This study thus demonstrates an inter-
esting case in which reasoners, despite identical representations of a 
target cause's overall causal strength (wc), come to very different con-
clusions when estimating the probability of a singular causal link be-
tween target cause and effect. It not only matters what is known about 
the overall strength of a target cause, but also how the overall strength is 
allocated to the different sub-links of the mechanism path connecting 
the cause with its effect. 

8. General discussion 

Causal mechanism information has been regarded as an important 
cue for establishing singular causation relations. The philosopher of 
science Nancy Cartwright (2017), for example, lists the discovery of 
intermediate steps in a causal sequence as one of the crucial indicators of 
singular causation. Several previous studies (e.g., Ahn et al., 1995; 
Johnson & Keil, 2018) showed that lay people search for causal mech-
anism information when they are asked to determine the cause of a 
particular event. What has been missing so far is a formal computational 
account explaining why causal mechanism knowledge is relevant for 
singular causation judgments. Based on the power PC framework of 
singular causation judgments (Cheng & Novick, 2005; Stephan et al., 
2020; Stephan & Waldmann, 2018), we here presented such a formal 
model. Moreover, we systematically assessed to which extent reasoners 
are sensitive to the different factors identified by our model. 

Experiment 1 demonstrated that singular causation judgments are 
overall in line with the predictions of the model. A very robust norma-
tive pattern that we found was that reasoners use causal mechanism 
information to engage in eliminative reasoning (Bird, 2005): subjects 
used information about the inactivity of mechanism components to rule 
out potential causes of an effect. Experiment 1 also documented that 
reasoners are sensitive to the more subtle predictions of our model. The 
observed singular causation judgments indicate, for instance, that rea-
soners understand the roles of causal strength and temporal information 
in causal mechanisms. However, while many of our participants were 
sensitive to the different factors included in our model, we also found 
that a number of subjects seemed to have relied on simplified strategies 
neglecting crucial components of the model. 

We also tested subjects’ sensitivity to factors constraining the 
epistemic utility of causal mechanism information. Experiments 2 and 3 
showed that reasoners tended to understand the relevant constraints. 
Most of our subjects in Experiment 2 understood that observing a target 

cause's mechanism variable is less informative in the context of inter-
secting mechanism paths, in which the target cause's mechanism vari-
able can be activated by the alternative cause, and in which the observed 
presence of the effect diagnostically implies the presence of the target 
mechanism. Experiment 3 showed that subjects also tend to understand 
that the degree to which an observation of a target cause's mechanism 
variable supports the conclusion of a singular causal connection be-
tween target cause and effect depends on how the target cause's overall 
causal strength is distributed across its mechanism path components. 
Yet, even though we tested prototypical scenarios in which mechanism 
information should clearly be uninformative, in both experiments we 
also found that a number of subjects continued to incorporate mecha-
nism information in their singular causation judgments in these cases. 
This finding is consistent with earlier research which showed that rea-
soners often process tasks superficially (see, e.g., Stephan et al., 2021; 
Waldmann, 2000, 2001). This tendency may be even stronger if the 
relevant information is conveyed via descriptions, as was the case in our 
studies, rather than by experience (cf. Rehder & Waldmann, 2017). 

A key finding of our study is that mechanism information is useful in 
the assessment of singular causation because it allows reasoners to insert 
more specific values for two crucial parameters, causal strength and 
causal latency. Our findings complement previous studies that docu-
mented the important role these parameters play for other types of 
causal inference and for causal learning. For example, previous studies 
have shown that causal strength knowledge is used in predictive, diag-
nostic, and interventional judgments (see, e.g., Fernbach et al., 2011; 
Meder & Mayrhofer, 2017a; Meder et al., 2014; Rottman & Hastie, 2014, 
for overviews). Similarly, several previous studies documented that 
causal latency intuitions play an important role in causal cognition. For 
example, intuitions about the time it takes a cause to produce an effect 
not only shape people's singular causation judgments, but also play a 
central role in how people induce general causal relationships from 
observed patterns of covariation (for an overview, see Buehner, 2017). 

8.1. Limitations and directions for future research 

To the best of our knowledge, our study represents the most sys-
tematic and comprehensive test of the role of mechanism information in 
singular causation judgments. However, there are also limitations that 
need to be addressed in future studies. The probably most obvious 
limitation is that we have analyzed and tested only situations in which a 
target cause C competes with a single known alternative cause A of the 
effect. In the vast majority of real-life scenarios, reasoners must deal 
with the fact that there might exist a multitude of further unknown 
causes of the effect. Our generalized power PC model of singular 
causation judgments can be applied to such contexts as well (see Ste-
phan et al., 2020, where this is discussed in the General Discussion). The 
model is not restricted to cases in which A represents a single known 
alternative cause. Instead of using separate values for the base rate bA 
and the causal strength wA of the alternative causes, we can insert the 
probability of the effect in the absence of the target cause, P(e| ¬ c) in 
such cases. This probability reflects the joint influence of all (known and 
unknown) alternative causes of the effect (see Cheng, 1997; Griffiths & 
Tenenbaum, 2005). An interesting question, however, is what the un-
known background causes imply for the utility of mechanism informa-
tion in singular causation judgments. One obvious problem that arises in 
such contexts is that we cannot rely on information about the alternative 
causes’ mechanism variables anymore.5 If we do not know what the 
alternative causes are, we also cannot know via which mechanism 
variables they generate the effect. This, in turn, implies that we cannot 
use information about the absence of mechanism variables to rule out 
the unknown alternative causes as singular causes of the effect. Contexts 

5 We thank Sam Johnson for the suggestion to discuss the implications of such 
cases. 
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with unobserved alternative causes imply that we can never be certain 
that c actually caused e. Our model captures this fact because P(c → e|c, 
e) will be < 1.0 if P(e| ¬ c) > 0.6 

Information about mechanism variables that belong to the target 
cause can still be relevant in such cases, however. We have shown that P 
(c → e|c, mC, e) tends to be higher than P(c → e|c, e) because the causal 
strength parameter for MC, wcmce, that needs to be used in this case will 
on average be higher than C's global strength parameter wc that we must 
use if MC is unobserved. Whether or not there exist multiple unknown 
alternative causes of the effect is irrelevant in this case. Even with un-
known background causes reasoners should continue to search for 
mechanism information. 

A more severe problem in contexts with unknown background causes 
is the calculation of the α parameter of our model, which is relevant for 
computing the probability of causal preemption (see also Stephan et al., 
2020). For unknown background causes, we cannot know if and when 
they occurred in the target situation; their onset times as well as their 
causal latencies will be unknown to us. We thus cannot know how likely 
these unknown causes preempt the target cause. One possible solution in 
such contexts is to set α to a conservative value. One option would be to 
set α = 1.0, which would reflect the assumption that alternative causes 
always preempt the target when they are sufficiently strong to generate 
the effect (as estimated by P(e| ¬ c)). P(c → e|c, mC, e) would then be a 
conservative estimate because it would represent the lower boundary of 
the probability that c is the singular cause of e. Future studies need to 
study how reasoners make causal inferences in these situations. 

On a conceptual level, a criticism of our study might be that we relied 
on a very specific characterization of causal mechanisms. We here 
adopted the causal Bayes net view on causal mechanisms (Pearl, 2000), 
according to which causal mechanisms reduce to dependencies between 
variables in a more fine-grained network relating a cause to its effect. 
There exist other views though (see Johnson & Ahn, 2017, for an 
overview). For example, according to Stuart Glennan, a proponent of the 
“new mechanical philosophy”, causal mechanisms consist of “entities 
(or parts) whose activities and interactions are organized so as to be 
responsible for the phenomenon” (Glennan, 2017, p. 17). According to 
this view, mechanism are more than mere statistical dependencies be-
tween variables. Other theories based on the theory of force dynamics 
assume that mechanism involve the notion of force transmission be-
tween physical objects who play the roles of agents and patients (e.g., 
White, 1989; Wolff, 2007). Distinguishing between these different the-
ories is beyond the scope of this paper, but we believe that alternative 
accounts of mechanisms would make similar predictions (see also Ste-
phan et al., 2021). We chose the causal Bayes net approach because, 
unlike many of its alternatives, it combines structural modeling with 
quantitative parameterizations, which allows us to derive precise 
numeric predictions from the models. 

If we look again at the singular causation judgments observed in 
Experiment 1, we see that they were altogether slightly less extreme 
than the model predictions. One possible explanation we have given for 
this pattern is that different subjects may have assumed different 
parameter values. An additional explanation for this tendency to provide 
conservative ratings, which was corroborated by our model-based 
cluster analysis, is that some subjects neglected mechanism differ-
ences, which in our cases implies lower values for the test cases in 
segments 2 and 4 of our test set. A further factor might be that subjects’ 
judgments also may have reflected a certain degree of uncertainty about 
the exact parameter values. The predictions of our model did not 
incorporate parameter uncertainty, which would require the model to 

use parameter distributions instead of point estimates (cf., Lu et al., 
2008; Meder & Mayrhofer, 2017a; Meder et al., 2014; Stephan & 
Waldmann, 2018). An interesting next step would be to see if the 
incorporation of parameter uncertainty would increase the model's 
predictive accuracy. 

In all our experiments subjects were asked to evaluate different test 
cases that were presented to them. Subjects could not control which 
information about the target situation they would actually like to 
receive. An interesting avenue for future studies would therefore be to 
use more active tasks in which subjects can decide themselves whether 
or not they would like to consult mechanism information. Such tasks 
would be particularly interesting for scenarios like the ones we tested in 
Experiments 2 and 3, for which, according to our model, the utility of 
mechanism information is assumed to be constrained under certain 
conditions. In everyday life, the search for additional information typi-
cally costs effort and time. Thus, it would be interesting to see if more 
effortful and time consuming active learning tasks would prompt sub-
jects to think more thoroughly about these scenarios. 

In our studies, we only used one specific experimental scenario. We 
thought that a scenario about a medieval kingdom would be particularly 
engaging and keep participants motivated. However, it must be kept in 
mind that our scenario about information transmission via carrier pi-
geons and telegraph towers might have triggered a rather mechanical 
construal of causality. As has been shown by Lombrozo (2010), lay 
people's causal ascriptions may differ depending on whether the 
described events are construed mechanistically with a focus on the un-
derlying mechanical and physical processes or teleologically with a 
focus on the goals and functions of the system. Moreover, Johnson and 
Keil (2018) have found that people's inclination to look for mechanism 
information seems to be particularly pronounced in physical causation, 
while it seems to be less strong in social causation. Our model is domain 
general and would make similar predictions in these different scenario 
types if the underlying causal models are identical. A possible expla-
nation of differences is therefore that people may systematically use 
different causal models for different domains. Future studies should test 
a broader range of scenario types to test the robustness of our model and 
to increase the external validity of our findings. 

The present research focused on singular causation queries, which 
ask whether an observed effect event was actually caused by a target 
cause. A related type of query that has been investigated in several 
previous studies are diagnostic probability queries (Fernbach et al., 
2011; Meder & Mayrhofer, 2017a; Meder et al., 2014; see also Meder & 
Mayrhofer, 2017b; Waldmann et al., 2008b). Diagnostic judgments start 
with an observation of an effect. However, as we have discussed in the 
theory section of this article, unlike singular causation queries diag-
nostic queries merely ask for the probability of the presence of a target 
cause, P(c|e), and not whether an observed present target cause was 
actually causally responsible for the effect, P(c → e|c, e). As we have 
discussed, causal mechanism information should also be helpful to 
answer diagnostic queries. Observing the presence of a cause's inter-
mediate mechanism variable in addition to the observation of the 
presence of its effect should make it even more likely that a cause 
candidate is present. No studies have so far been conducted that test this. 
Furthermore, it would be interesting to run experiments that directly 
compare judgments of the diagnostic probability and the probability of 
singular causation. As we have mentioned, the diagnostic probability of 
the presence of a candidate cause given the presence of its effect and the 
probability that a candidate cause actually is the singular cause of the 
observed effect are not the same (see also Meder et al., 2014). For 
example, the probability that a person with lung cancer (e) is a smoker 
(c), P(c|e), is not the same as the probability that it actually was the 
smoking that caused this person's lung cancer, P(c → e|c, e). In some 
smokers with lung cancer, the singular cause of their disease might be 
the exposure to asbestos, for example. To give an example using our test 
cases from Experiment 1, consider test case 22 from segment 4. This is a 
test case in which neither the target cause nor its mechanism variables 

6 The only possibility of how P(c → e|c, e) could be 1.0 in this case is to assign 
a value of 0 to our model's α parameter. α = 0 models a situation in which we 
rule out that the target cause is causally preempted by an alternative cause. If 
alternative causes are unobserved, preemption cannot be ruled out, however, 
and α must be >0. 

S. Stephan and M.R. Waldmann                                                                                                                                                                                                            



Cognition 218 (2022) 104924

19

are observed, but it is observed that the competing castle's telegraph 
tower forwarded a message to the palace. The probability that the target 
castle is the singular cause of the alarm in the palace is very low for this 
test case. By contrast, given the parameterization of the causal structure 
that we used (see Fig. 2), the diagnostic probability that the target castle 
sent a message is much higher (see our supplementary file at https://osf. 
io/3bwyv/) because the lower boundary for the diagnostic probability is 
the target cause's base rate (see also Meder et al., 2014). As another 
example, imagine a genetic mutation that is present in almost all in-
dividuals of a population but that only rarely causes a specific symptom. 
The same symptom is often caused by some alternative cause, though. In 
this population, the probability that someone with the symptom also has 
the genetic mutation is at least as high as the mutation's base rate. The 
probability that the mutation actually caused the person's symptom is 
lower, however, because the mutation has a low causal strength and 
because there exists an alternative cause that often produces the same 
symptom. In general, a suitable test condition for future studies asking 
subjects either diagnostic probability or singular causation queries is one 
in which a candidate cause has a very high base rate but very low causal 
strength, and in which alternative causes of the effect are frequent and 
strong. In such a context, the diagnostic probability of the cause's 
presence should be high, but the probability that it actually caused the 
effect in a given case should be low. 

8.2. Conclusion 

The present research showed both formally and empirically that 
information about causal mechanisms is an important source of infor-
mation when it comes to the assessment of singular causation. We have 
shown that a number of factors informed by mechanism information, 
including the structure and strength of causal relations, affect singular 
causation judgments. Future studies need to further investigate bound-
ary conditions of people's competency to assess singular causation 
relations. 
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