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articles are given in Appendix A.

Göttingen, January 2019 S. St.



Abstract

This thesis addresses the question of how causal queries about singular cases can be
answered. Singular causation queries refer to causal connections between actually
occurred events that can be localized in space and time. “Did the storm last night
cause the flower pot to break apart?” or “Was it the gunshot instead of the poisoning
that caused the victim’s death?” are vivid examples. Singular causation queries
can be contrasted with general causation queries, which refer to causal connections
between re-instantiable types (e.g., “Does smoking cause lung cancer?”). Singular
causation queries are prevalent in our daily lives and important in many professional
disciplines, such as the law, medicine, or engineering. But how can we assess whether
an event c caused another event e? Given that causal connections are not directly
perceivable, how can a causal co-occurrence of events be discriminated from a mere
coincidental one? In this thesis, I propose a new computational model that is
intended to help answering this question. The model is based on Cheng and Novick’s
(2005) Power Model of Causal Attribution, according to which general-level causal
knowledge about the potential causes’ powers (Cheng, 1997) is crucial. The causal
power of a cause is the probability with which it brings about the effect. I will argue
that more than that is needed: The assessment of singular causation also needs
to take temporal information into account. By focusing solely on causal power,
Cheng and Novick’s model assigns singular causal responsibility to a target cause
whenever the cause was sufficiently powerful for the effect. It thus fails to take into
consideration that causes can be preempted in their efficacy by alternative causes. To
account for the problem of causal preemption, the new model combines information
about causal power and temporal information. Two different types of temporal
information are identified as relevant: information about causal latency, which is the
time it takes a cause to unfold its power, and information about the onset difference
between the potential causes. A second problem of the original model is that it
relies solely on point estimates of the power parameters, and thus does not take
into account that reasoners incorporate uncertainty about the underlying general
causal structure and the parameters. To account for this problem of inferential
uncertainty, the new model is embedded into the structure induction framework
(Meder, Mayrhofer, & Waldmann, 2014). The new model was experimentally tested
across two research articles (Stephan, Mayrhofer, & Waldmann, submitted; Stephan
& Waldmann, 2018). The experiments revealed that the new model better accounts
for people’s singular causation judgments than the original model.
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Chapter 1

Introduction

“Shallow men [and women] believe in luck or in circumstance. Strong
men [and women] believe in cause and effect.”

- Ralph Waldo Emerson

Our mind possesses the remarkable capacity to structure the world into causes
and effects. We do not have the feeling that we live in a world consisting of pure
chaos, in which things just happen, where events pop up out of nothingness and
bootstrap themselves into existence. Rather, we think that things happen because
there are causes at play that make them happen. Lung disease rates increased
dramatically in the first half of the twentieth century because more and more people
had fallen prey to the seductive tobacco commercials and started to light up. The
high density of shooting stars whooshing over the night sky every August is a celestial
spectacle that we can observe because our earth revolves around the sun on an
orbit that intersects the asteroid belt of our solar system. The orbits, in turn,
on which all planets of the solar system are traveling exist because the sun with
its gigantic mass is curving space and time around it. Moderate exercising helps
improve (or maintain) good health. Drinking a bottle of red wine causes headaches.
The space ship Columbia and its seven crew members were lost because a tiny piece
of insulating foam that had broken loose from the left bipod ramp section during
launch teared a small whole in the thermal protection shield of the orbiter’s left
wing.

The ability to reason causally about how the world works is regarded by cognitive
scientists as one of the core elements of our thinking and reasoning (see Sloman, 2005;
Waldmann, 2017; Waldmann & Hagmayer, 2013). Thinking causally allows us to
predict future events, to make diagnoses, to intervene effectively, and to explain. It
enables us to exert control over our environment and allows us to adapt to it more
successfully than probably any other species.
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The question of this thesis is how causal judgments about singular cases can
be made. By singular cases singular co-occurrences of events are meant that can
be located in space and time, like the breaking loose of a tiny piece of insulating
foam that occurred on January 16, 2003, and the destruction of the Columbia that
occurred two weeks later. Singular causation queries can be contrasted with general
or generic causal queries, which refer to causal relationships holding between re-
instantiable types of events or factors. Queries like “Does eating red meat cause
colon cancer?”, “Do physical exercises increase psychological well-being?” or “Can a
particular new medicine cause headaches as a side effect?” are all questions located
on the generic level, whereas queries like “Did Peter’s eating red meat cause his colon
cancer?”, “Was it my exercising regularly that led to my improved well-being”, or
“Was this dose of medication I took responsible for my headaches?” all are concerned
with causality in singular cases.

People ask and answer singular causation queries all the time. As children we ask
why the dinosaurs got extinct or why one of our teeth began to wobble. As adults we
ask why we got this letter from the tax office, or whether we would have maintained
a healthy cholesterol level if we had stuck to a low-fat diet. Pinpointing singular
causes is important because it helps identifying target points for interventions that
allow us to change adverse states into more favorable ones, or to maintain states
that we consider to be good for us. Further, providing explanations for events that
happened seems to be in its own right an intrinsically gratifying activity for us
humans, and singular causes often seem to be the bearers of explanatory relevance
(see also Gopnik, 2000; Lombrozo & Vasilyeva, 2017; Strevens, 2008).

Although singular causation queries are ubiquitous in both our mundane lives
and in professional disciplines such as the law (see Hart & Honoré, 1959/1985;
Lagnado & Gerstenberg, 2017; Russo & Williamson, 2011) or medicine, the question
of how it can be established whether two singular events c and e were causally
connected or not turns out to be difficult to answer. The reason is, as has been
famously postulated by the philosopher David Hume (Hume, 1748/1977), that causal
connections between events are not directly observable (though see, e.g,. White,
2017, for a different view). How, then, can a causal singular co-occurrence of events
be distinguished from a mere coincidental one?

The central idea is that judgments about singular causation must rely on knowl-
edge about general causation, which, according to dependency theories of causal
inference (see Waldmann & Hagmayer, 2013, for an overview), needs to be inferred
on the basis of observed patterns of covariation. For example, according to proba-
bilistic theories of causality (e.g., Eells, 1991), we can infer (if the right conditions
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are met) that smoking causes lung cancer because the probability of lung cancer
is higher among smokers than among non-smokers. However, merely knowing that
smoking can generally cause lung cancer is clearly not sufficient to conclude that,
for instance, Peter’s smoking caused his lung cancer. The general relationship be-
tween smoking and lung cancer is a rather noisy one. Not all smokers end up with
lung cancer and lung cancer can also be caused by other factors (e.g., asbestos).
Thus, despite confidence in the existence of a general link between smoking and
lung cancer, Peter’s singular case could still have been a mere coincidence.

Patricia Cheng (1997) suggested that reasoners would interpret observable pat-
terns of covariation in a particular way that allows to quantify the unobservable
strength or power of a cause. Causal power represents the probability with which a
cause, acting in isolation from alternative causes, brings about the effect. Based on
Cheng’s seminal Causal Power Theory (1997), Cheng and Laura Novick (2005) have
proposed a Power Framework of Causal Attribution, according to which knowledge
about the powers of causes is the crucial ingredient for the formation of believes
about singular causation. The power framework of causal attribution provides a
set of equations that intend to compute, for different situations in which a reasoner
might be, the probability with which a potential cause event c was actually causally
connected to a target effect event e, denoted P (c→ e). In the Bayesian sense, this
probability can be understood as the degree of belief that c and e were causally
connected.

In this thesis, I will argue that the Power Model of Causal Attribution needs
to be refined to be successful, and the overall goal of this thesis is to provide this
refinement and to present empirical evidence for its psychological validity. One
problem of the framework that I will address is of epistemic nature. It has been
neglected that singular causation judgments should incorporate uncertainty about
the underlying general causal structure and its parameters. Relying on previous
work by Griffiths and Tenenbaum (2005) and Meder et al. (2014), I will show how
this shortcoming can be remedied through an augmentation of the framework with a
Bayesian inference algorithm that quantifies these uncertainties. I will also provide
empirical evidence suggesting that lay people’s singular causation judgments are
indeed sensitive to these inferential uncertainties.

The second problem I will address is in my opinion even more relevant because
it is concerned with a conceptual rather than a mere epistemic shortcoming of the
current framework. A central argument will be that the standard framework has
neglected that another type of information is equally crucial for the evaluation of
singular causation. This type of information concerns the temporal relation between
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the potential target cause and potential alternative causes of the effect. I will show
that thus far the standard power model of causal attribution identifies a potential
cause c that has co-occurred with the effect on an occasion as the singular cause
of the observed effect e whenever one can be certain that c had sufficient causal
power to produce e. The framework thus neglects the problem that a target cause
can be preempted in its efficacy by an alternative cause that was also present on the
occasion. To deal with the problem of causal preemption, I will show that a new
term can be added to the equations of the framework, which combines causal power
and temporal information to estimate the probability with which the target cause
c was preempted on an occasion by an alternative cause a. Several studies that I
conducted will demonstrate the validity of the new model.

This thesis is structured as follows: Since a crucial idea is that reasoners must rely
on their background knowledge about the powers of the potential causes when they
want to assess causality in singular cases, I will in the next chapter introduce Cheng’s
(1997) famous causal power theory, which explains how the unobservable power of a
target cause can be inferred from observable patterns of covariation. Thereafter, in
Chapter 3, I will introduce Cheng and Novick’s (2005) Power Framework of Causal
Attribution, which tells us how knowledge about causal power ought to be applied
to answer causal queries about singular cases. I will work out the logic behind the
equations of the framework and make clear what I think the framework has already
been getting right and, more importantly, what I think it has not been getting
right. The focus will then be on how the “what it has not been getting right” can
be fixed. I will then propose in Chapters 4 and 5 a refined version of the model that
remedies its shortcomings. In Chapter 6, I will summarize the results of the series
of experiments that were reported in the two articles on which this dissertation
is based, which aimed at testing the psychological validity of the new model. In
Chapter 7, I will discuss empirical and theoretical limitations and will point out
interesting research questions for future studies.



Chapter 2

Cheng’s (1997) Causal Power Theory

The basic idea of the Power Framework of Causal Attribution is that the degree to
which a reasoner can believe that an observed singular co-occurrence of events c and
e was causal instead of merely coincidental ought to be based on knowledge about
the relative causal power with which the corresponding target cause factor C tends
to generate the effect in comparison to potential alternative causes A. As causal
power is assumed to be an unobservable entity, however, the crucial question that
needs to be answered first is how a reasoner can infer the causal power with which
a particular cause factor generates its effect. An answer to this question is provided
by Patricia Cheng’s (1997) Causal Power Theory, which will be introduced in this
chapter.

2.1 Estimating unobservable causal powers from ob-

servable covariations

The fundamental idea of the Causal Power Theory is that even though the power of
a cause is not directly observable, causal powers give rise to and explain observable
patterns of covariation (for a philosophical defense of this view see Cartwright, 1989).
Importantly, the theory also specifies the conditions under which observable patterns
of covariation between a potential target cause factor and an effect factor can be
regarded as a valid diagnostic tool that can be used to estimate the causal power of
the target cause factor.

For an illustration of how the theory works, let us consider a concrete example.
Imagine the scenario of a medical study in which the question shall be answered
whether a newly developed medicine (C) can cause headaches (E) as a side effect
(cf. Buehner, Cheng, & Clifford, 2003; Liljeholm & Cheng, 2007, 2009, who used
this scenario in their studies). The standard experimental procedure in this case
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Table 2.1: The contingency table
e ¬e

c n(c, e) n(c,¬e)
¬c n(¬c, e) (¬c,¬e)

would be to collect two random samples of patients, one that serves as a treatment
group in which the newly developed drug is administered, and another one serving
as an untreated control group. The potential cause and the effect factor in this case
can be represented as binary variables that can either be instantiated (c or e) or not
instantiated (¬c or ¬e). If the cause and effect factor represent binary variables,
the causal power of the target cause factor C can be understood as the probability
with which it individually tends to generate the effect. The observations of a study
involving two binary factors are typically summarized in a 2×2 contingency table as
illustrated in Table 2.1. Evidence for the hypothesized generative causal influence of
the target cause C is supposed to be signalled in this experimental setting according
to normative theories of probabilistic causality (e.g., Eells, 1991; Reichenbach, 1978;
Salmon, 1980; Suppes, 1970) if the probability of the effect in the presence of the
cause, P (e|c) is greater than the probability of the effect in the absence of the cause,
P (e|¬c). A standard measure that has been proposed in both psychology (Jenkins &
Ward, 1965) and philosophy (Salmon, 1965) to quantify the probabilistic dependency
between the target cause and the effect is the contingency or ∆P model, which is
given by the following equation:

∆P =
n(c, e)

n(c, e) + n(c,¬e) −
n(¬c, e)

n(¬c, e) + n(¬c,¬e) = P (e|c)− P (e|¬c). (2.1)

Imagine our fictitious study had revealed the results that are depicted graphically
in Figure 2.1. The left panel shows the treatment group and the right panel shows
the untreated control group. As can be seen, out of the twenty-four patients who
received the new medicine C twenty ended up with headaches, (n, e) = 20, and four
did not develop headaches, n(c,¬e) = 4. The conditional probability of headaches
in the presence of C hence is P (e|c) = 20

20+4
= 5

6
. The control group, by contrast,

is split in half. Twelve patients developed headaches, n(¬c, e) = 12 and twelve
remained free of headaches, n(¬c,¬e) = 12, which yields a base rate probability of
headaches of P (e|¬c) = 12

12+12
= 1

2
. These results thus yield a probabilistic contrast

of ∆P = P (e|c) − P (e|¬c) = 20
24
− 12

24
= 8

24
= 1

3
. This probabilistic contrast of 1

3

indicates that the probability of headaches increases by one third in the presence
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Figure 2.1: Results of a fictitious medical study in which it was investigated whether
a newly developed medicine can cause headaches as a side effect. The treatment
group is depicted in the left panel. Blue frowning faces indicate the presence of the
effect and white smiling faces indicate the absence of the effect.

compared to the absence of the target cause factor.
To see how the Causal Power Theory explains this observed probabilistic contrast

by means of causal powers and to see how the causal power of C can be estimated
based on these data, we need to consider the assumptions that the theory makes.
Even though Cheng (1997) originally has not used any terminology from the causal
Bayes nets literature, the assumptions made by her theory have later been shown
to instantiate a simple common-effect causal structure in which two cause factors
combine their influence independently according to a noisy logical OR function (see
Glymour, 2003; Griffiths & Tenenbaum, 2005; Pearl, 1988). This causal structure is
depicted graphically in Figure 2.2. As can be seen, the effect variable E is assumed
to have two potential generative causal sources, C and A. C represents the target
cause factor, the medicine in our example, whose causal power shall ultimately be
estimated, and A represents the conglomerate of all known and unknown alternative
factors that can also generate E (e.g., high blood pressure, dehydration, etc.). C
and A are hence assumed to provide an exhaustive set of all potential generative
causes of E. In the simplest case, A consists of only one alternative cause. The
parameters bC and bA attached to the causal arrows that point towards C and A

represent the base rates with which C and A occur, respectively. In the given
example, the base rate bC of C is the treatment probability. As half of the subjects
were given the pill, this parameter is known to be bC = 0.5. The base rate with
which alternative causes occur, bA, is not known in our example, because alternative
causes remained unobserved. The causal powers that generate the observed data are
represented by the weights, wC and wA, of the causal arrows that connect C and A
to E. These parameters correspond to the probabilities with which the target cause
and alternative causes generate E individually.
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Figure 2.2: The common-effect causal structure assumed by the Causal Power The-
ory as the underlying generative causal source of the observed contingency. C and
E in the causal structure denote the target cause and effect factor, respectively. A
is assumed to comprise the sum of all known and unknown alternative causes of E.
bC and bA denote the base rates of C and A; wC and wA denote the causal powers
of C and A. C and A are assumed to combine their causal powers according to a
noisy logical OR function.

The validity of the causal structure depicted in Figure 2.2 as an explanation of the
observed data rests on the following independence assumptions: First of all, C and A
must occur with independent base rates, which means that the marginal probabilities
with which C and A occur, P (c) and P (a), must remain invariant in the presence
and absence of the respective other factor (e.g., P (a|c) = P (a|¬c) = P (a) and
P (c, a) = P (a) · P (c)). Note that this is a criterion whose fulfillment a professional
researcher tries to accomplish in an experimental setting by means of manipulation
of the target cause factor and random allocation of the objects (e.g., patients) of
measurement to the different conditions. Secondly, C and A have to generate E
with independent, non-interacting causal powers. This means that the probability
with which C or A tend to generate the effect in isolation have to stay invariant in
each others’ presence. The third assumption that must be met is that the causal
powers of C and A are independent of the base rates with which C and A occur,
that is, a change of the base rate parameters bC and bA of the causal structure in
Figure 2.2 must not alter the weights wC and wA of the causal arrows that lead into
E.

With these assumptions at hand, we can see how the theory explains the two
components that determine ∆P . First, let us consider how the theory explains the
observed base rate of the effect, P (e|¬c), which is the second component of ∆P .
According to the theory, all the effects that have occurred in the absence of C must
be due to the isolate influence exerted by the alternative cause factors A. The right
panel of Figure 2.3 shows what we can assume has happened to the causal structure
depicted Figure 2.2 in the control group. As C is prevented from occurring through
experimental intervention in this group, P (e|¬c) is given by

P (e|¬c) = bA · wA, (2.2)
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Figure 2.3: Illustration of how the Causal Power Theory explains the observed
contingency by means of an underlying common-effect structure in which only the
status of the target cause factor C is assumed to vary between the control and the
treatment condition.

the product of the base rate with which alternative causes occur and their causal
power. In the present example this product is known to be bA ·wA = 1

2
, as we have

seen that half of the patients in the control group suffered from headaches.
By contrast, the probability of the effect in the presence of the cause, P (e|c),

which represents the first component of ∆P , is assumed to have resulted from a joint
influence of the target cause and the alternative causes (see left panel in Figure 2.3).
If the independence assumptions that were introduced above are met, that is, if
bA · wA remains invariant in the presence of C, P (e|c) is given by

P (e|c) = wC + bA · wA − wC · bA · wA, (2.3)

the sum of the causal power of C and the product of the base rate and the causal
power of the alternative causes A minus the overlap of the three parameters. This
equation instantiates the assumption that the effect can either be caused by the
target cause C or by the alternative cause A or by both simultaneously. With these
two equations, the formula for ∆P can be rewritten as a function of the parameters
of the causal structure depicted in Figure 2.2:

∆P = P (e|c)− P (e|¬c) = wC + bA · wA − wC · bA · wA − bA · wA. (2.4)

Having derived this equation, we can now see how the causal power of C can be
obtained. As the product of the base rate and the causal power of the alternative
factors (bA · wA) is assumed to be measured by P (e|¬c), the only quantity that
remains unknown is the causal power of C, wC , which we can see if we rewrite the
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equation for ∆P as

∆P = wC + P (e|¬c)− wC · P (e|¬c)− P (e|¬c). (2.5)

If we now rearrange this equation, we see that the generative causal power1 wC of
the target cause factor C can be computed from the observed data with the following
equation:

wC =
∆P

1− P (e|¬c) . (2.6)

In the present example, applying Equation 2.6 reveals that the causal power of the
hypothetical medicine is wC = 2

3
, that is, the medicine tends to generate headaches

with a two-thirds probability. In practical terms, two out of three headache-free
patient swallowing the pill can expect to develop headaches.

The principle behind Equation 2.6 can also be illustrated by means of counter-
factual considerations in the following way (cf. Pearl, 2000). If we assume that the
alternative causes A have occurred with the same probability in the treatment group
as they did in the control group, and if we also assume that they have exerted the
same influence in the treatment group as they have done in the control group, we
can conclude that half of the patients in the treatment group would have developed
headaches even if they had not taken the medicine. In this case there would have
remained twelve patients in the treatment group in which the medicine could have
made an exclusive difference. If this had actually happened, we would have seen
all patients suffering from headaches in the treatment group. However, the results
show that four patients did not end up with headaches, which implies that out of
the twelve hypothetical cases in which C could have made an exclusive difference, it
actually seems to have done so in only eight. That is, the strength or causal power
with which C tends to generate the effect is 8

12
= 2

3
.

Another possibility to illustrate the logic behind the Causal Power Theory is to
use an Euler diagram (cf. Novick & Cheng, 2004) as shown in Figure 2.4, which I
introduce here because it will be helpful in the following chapters. Like in Figure 2.1,
the panel containing the observations that were made in the presence of C are shown
on the left and the panel containing the observations that were made in the absence
of C are shown on the right. All the effects that occurred are represented by the
white area, whereas the shaded area depicts all cases in which the effect did not

1Cheng (1997) also provides a set of assumptions and the equations for the case of preventive
causal power, the probability with which a cause tends to prevent an effect from occurring. How-
ever, as the concept of generative causal power is the relevant one for this thesis, the equations for
preventive causal power will be omitted here.
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Figure 2.4: Euler diagram illustrating how the causal power theory explains the
observable ∆P by means of unobservable causal powers exerted by two independent
causal sources, C and A (cf. Novick & Cheng, 2004).

occur. The two different types of circles (dashed vs. solid) represent the two sources
of generative causal power, C and A, that are assumed by the theory. The fact
that no white space lies outside of the two circles illustrates that C and A together
are assumed to comprise all possible causes of the effect, as well as the assumption
that effects can never occur without being caused. Further, the assumption that
the probability with which the background factors A occur is independent of C and
the assumption that the causal power of A remains constant in the presence of C is
captured by the constant size of the solid circle in the left and the right panel. The
assumption that the causal power wC of the target cause C adds independently and
according to a noisy logical OR function to the influence of the background causes
A (formally given by wC + bA ·wA−wC · bA ·wA in Equation 2.3) is captured by the
white space being larger in the left than in the right panel and by there being an
overlap of the dashed and the solid circle. With the help of this diagram, we can see
that Equation 2.6 estimates the individual causal influence of C by partialling out
from the observable P (e|c) the influence of the alternative causes, given by P (e|¬c).

2.2 Evidence for the psychological validity of the

theory

The Causal Power Theory represents a normative computational theory (Anderson,
2013; Marr, 1982) of causal inference that aims at providing an optimal solution to
the inference problem. However, the theory also has been shown to be descriptively
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accurate in many contexts. Most importantly, the theory can capture several phe-
nomena observed in human causal inference that purely associative accounts, like
the Rescorla-Wagner Model (Rescorla & Wagner, 1972) or the ∆P Model, which
do not distinguish between the data level and the level of an underlying generative
causal source, fail to explain (comprehensive recent overviews are given, for example,
by Cheng & Buehner, 2012; Cheng & Lu, 2017).

2.2.1 Zero-contingencies under ceiling vs. non-ceiling condi-

tions

One phenomenon that the Causal Power Theory can readily explain and that purely
covariational accounts that lack any causal assumptions that go beyond the data
given cannot account for is why a probabilistic contrast of ∆P = 0 is regarded
as an indicator for the absence of a causal capacity of the target cause factor to
generate the effect only if P (e|c) = P (e|¬c) < 1 but not if P (e|c) = P (e|¬c) = 1.
Imagine our fictitious study had yielded the perfect ceiling effect that is illustrated
in Figure 2.5 A). If all patients had suffered from headaches at the time of measure-
ment, ∆P would have been zero (P (e|c) − P (e|¬c) = 1 − 1 = 0). Yet, instead of
having concluded that the medicine is generally ineffective, we rather would have
been inclined to say that the causal status of the medicine cannot be determined
under these conditions. Cheng’s Causal Power Theory captures this intuition, as
Equation 2.6 is undefined in this case. Conceptually, if the medicine had not been
administered, we would still have expected all patients in the treatment group to
exhibit the effect due to the alternative causes. This, in turn, implies that there
would not have been any chance or “space” for the medicine to display its potential
causal power. The typical experimental strategy that a researcher would pursue in
such a case would be to try to identify important alternative cause factors and to
shield the experimental setting from their influence.

Now contrast this case with the situation that is depicted in Figure 2.5 B), in
which ∆P is zero but P (e|c) and P (e|¬c) are smaller than one. Imagine that these
were the results the researcher obtained in her second attempt to test whether the
medicine has an effect after she had managed to eliminate an important alternative
cause factor of headaches. Here, the absence of a difference between the two groups
intuitively seems to signal a lack of causal power of the candidate cause. In line with
this intuition, Equation 2.6 is zero in this case. We can imagine that the medicine
would have had the chance to make an exclusive difference in half of the treatment
group, but the fact that this difference was not observed intuitively is taken as an
indication that the medicine is lacking the hypothesized causal capacity.
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Figure 2.5: Different situations in which the contingency is zero but intuitions
with respect to the causal power of target cause factor vary. A) represents a non-
contingent situation due to a perfect ceiling effect. B) represents a non-ceiling
situation in which ∆P is zero.

2.2.2 Different intuitions towards constant positive proba-

bilistic contrasts

Another type of situation that provides evidence that lay people’s causal inferences
are driven by assumptions in line with the Causal Power Theory is one in which
constant positive values of ∆P result from different combinations of P (e|c) and
P (e|¬c) (see Cheng, Novick, Liljeholm, & Ford, 2007). An example for such a case
is shown in Figure 2.6. As can be seen, ∆P is one-third in both Situation A and
Situation B. However, in Situation A this value of ∆P is obtained in a context
in which the marginal probability of the effect, P (e), is relatively high, while in
Situation B the same value of ∆P is obtained under a lower level of P (e). While
these two situations are treated as equivalent by purely associative models, applying
Equation 2.6 reveals that the Causal Power Theory predicts higher causal strength
inferences in Situation A than in Situation B. In Situation A, the candidate cause
appears to have made a difference in two-third of the cases that cannot be explained
by the alternative causes, and hence its causal power is wC = 2

3
. In Situation B,

by contrast, the cause appears to have made a difference in only two-fifths of the
cases that cannot be explained by the influence of the alternative causes, and hence
its causal power is only wC = 2

5
. Generally, given a constant positive probabilistic

contrast, the Causal Power Theory predicts increasing values with an increase in the
effect’s base rate. An interesting aspect about the two data sets shown in Figure 2.6
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Figure 2.6: Different situations in which the contingency is constant at a positive
value but intuitions with respect to the causal power of target cause factor vary.

is that a statistical analysis with a χ2 test, which in contrast to the Causal Power
Theory does not make any a priori causal assumptions, would yield identical p-values
of 0.03.

Buehner et al. (2003) in their Experiment 2 confronted subjects with samples of
observations that were analogous to those contrasted in Figure 2.6. After subjects
had observed the respective data set, they were first asked to estimate whether they
believed that the medicine has an effect or not. If subjects indicated an influence,
they were further asked to estimate how many of one hundred fictitious new pa-
tients who would all not be suffering from headaches could be expected to develop
headaches if they took the medicine. This question was supposed to elicit causal
strengths ratings. In line with the predictions made by the Causal Power Theory,
subjects in the condition in which the marginal probability of the effect was high
gave higher causal strength ratings than subjects in the condition in which the same
contingency was observed under a lower level of P (e).

2.2.3 Non-interactive causal powers as a tacit default as-

sumption

A further demonstration for the psychological validity of the core assumptions of the
Causal Power Theory was provided by Liljeholm and Cheng (2007). In their exper-
iments, Liljeholm and Cheng (2007) investigated whether lay people tacitly share
the assumption made by the theory that the candidate cause and the alternative
causes generate the effect with non-interactive causal powers. This assumption of
the theory is particularly interesting because, other than the assumption that target
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Figure 2.7: The two different contingency data sets that Liljeholm and Cheng (2007)
presented their subjects in the two conditions of their study.

cause and alternative causes occur with independent base rates, its fulfillment lies
beyond the control of a reasoner. The simplest method to establish independent
base rates of the different potential causes of the target effect (i.e., to ensure non-
confounding) is randomization and manipulation, the principles that characterize
a scientific experiment. Nothing can be done, however, to prevent the candidate
cause from interacting with present alternative causes of the effect. As Cheng and
Lu (2017) have described it, the assumption of non-interactive causal powers there-
fore reflects a reasoner’s aspiration that causal knowledge that has been acquired in
the past remains useful for application in novel contexts that will likely be different
with respect to the causal background factors. Of course, this assumption can be
given up in light of contradictory empirical evidence (see Cheng & Lu, 2017, for an
elaboration on this issue).

The data sets that Liljeholm and Cheng (2007) presented to their subjects in one
of the experiments are depicted in Figure 2.7. Subjects read that a pharmaceutical
company wanted to investigate whether two different types of an allergic medicine
(Medicine A and Medicine B) might cause headaches as a side effect, and that the
company had run two different studies to investigate this. Subjects then were either
presented with the two contingency data sets shown in the left panel of Figure 2.7
(Condition 1) or with the two contingency data sets shown in the right panel of
Figure 2.7 (Condition 2). Subjects were asked to assume that the two studies were
carried out in two different hospitals (Hospital A and Hospital B) and that the
probability with which headaches occur at base line might differ. While Hospital A
tested the isolate influence of medicine A, Hospital B tested the influence of Medicine
A and Medicine B in combination. Crucially, the causal test question that subjects
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were asked after they had inspected the results of the fictitious studies referred only
to Medicine B, the medicine that had never seen being tested in isolation. Subjects
were asked to indicate whether they believed that Medicine B has the power to
cause headaches as a side effect.

What Liljeholm and Cheng (2007) wanted to find out with this test question
was which assumptions about the causal properties of Medicine A their subjects
had made when they evaluated the data set showing the effects of the combined
treatment. The hypothesis was that, if subjects tacitly made the default assump-
tion that the causal power of Medicine A remained invariant in the context where
Medicine B was simultaneously present, subjects in Condition 1 should have come
to the conclusion that Medicine B is causally ineffective, while subjects in Condi-
tion 2 should have inferred that Medicine B has the causal capacity to generate the
effect. To see this, let us first consider Condition 1. From the first panel showing
the results obtained in Hospital A, we can see that Medicine A in isolation tends
to generate headaches with a causal power of 0.75: it can be expected that two-
thirds of the patients in the treatment group would have developed headaches due
to the background causes even if Medicine A had not been administered. Thus, in
the remaining one-third of the patients in which only Medicine A could have made
a difference, it actually seems to have done so in 75%. Now consider the results
obtained in Hospital B. First of all, the observations made in the control group in-
dicate that alternative background causes were, other than in Hospital A, apparently
not an issue in Hospital B. Now, if we assume that Medicine A exerted the same
causal power in the presence of Medicine B as it did in Medicine B’s absence (in the
context of Hospital A), then we should see more than 75% percent of the patients
exhibiting the effect only if Medicine B has been causally effective, too. What we
can see, however, is that from the twenty-four patients who took the combination of
drugs, only eighteen ended up with headaches, that is 75%. Medicine B therefore
seems to be ineffective.

Now consider what happened in Condition 2. Here, Medicine A produces the
effect with a power of 0.25. Now, if Medicine B was ineffective and Medicine A
exerted its power invariantly, only two out of the eight patients that can be assumed
not to have developed headaches in the absence of any treatment should have been
affected. We can see, however, that six out of these eight cases developed headaches,
and therefore can conclude that Medicine B possesses a causal capacity to bring
about headaches. (In fact, Medicine B is even stronger than Medicine A according
to the Causal Power Theory; its causal power is 2

3
). Another way to see this is to

apply Equation 2.6 first to the results obtained in Hospital A and then to the results
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obtained in Hospital B by simply ignoring that Medicine B was also present there.
Equation 2.6 would yield a causal power of A of 0.75 in the context of Hospital
B, which is a strong deviation from what is obtained if the Equation 2.6 is applied
to the data from Hospital A. This deviation can be explained by an additional
independent influence of Medicine B.

The vast majority of subjects in both conditions provided answers that were in
line with the predictions made by the Causal Power Theory. These results indicate
that reasoners indeed seem to try to estimate the power of causes when they eval-
uate contingency information and that they tacitly make the default assumption
that causal powers remain invariant across contexts that change with respect to
the composition of background factors. Importantly, these results are again inex-
plicable under a purely covariational view lacking any a priori causal assumptions
that constrain the interpretation of the learning data (see also Cheng, Liljehom, &
Sandhofer, 2013).

2.3 Problematic findings

A crucial prediction of the Causal Power Theory that was empirically confirmed by
the study of Buehner and May (2003) is that judgments of causal strength should,
under constant positive levels of ∆P , increase with the observed base rate of the
effect, P (e|¬c). This positive influence of P (e|¬c) should, however, not occur under
conditions of ∆P = 0. Yet, the results of Experiment 1 in Buehner et al. (2003)
revealed a similar positive influence of P (e|¬c) under these conditions, an effect that
has been called “frequency illusion” in the literature (e.g., Allan & Jenkins, 1983).

Other problematic findings have been reported by Lober and Shanks (2000),
who tested data sets in which causal power was kept constant, while ∆P was varied.
For example, in some of the data sets that Lober and Shanks (2000) showed their
subjects the effect always occurred in the presence of the cause, P (e|c) = 28

28
, while

the base rate decreased in steps of 0.25 from P (e|¬c) = 21
28

over P (e|¬c) = 14
28
, and

P (e|¬c) = 7
28

to P (e|¬c) = 0
28
. The causal power of the target cause is 1 in all

these cases. Yet, subjects’ ratings increased with a decrease of P (e|¬c).
The problematic findings of Buehner et al. (2003) and Lober and Shanks (2000)

have been taken as evidence by Griffiths and Tenenbaum (2005) for their Bayesian
Causal Support Model, according to which reasoners are sensitive to and express in
their causal judgments the degree to which an observed contingency “supports” the
inference that the target cause does or does not possess the causal power to generate
the effect. Griffiths and Tenenbaum (2005) have pointed out that causal power rep-
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resents a mere point estimate of the strength of a causal connection, which neglects
the possibility that any empirical effect (the observed probabilistic contrast) could
have resulted from mere sampling variation. With respect to the causal diagram
shown in Figure 2.2, while causal power assesses the strength of a causal relation-
ship (the weight of the causal arrow, wC), the question whether an observed effect
is due to mere sampling variation or due to an actual influence of the target cause
refers to the existence of the causal arrow connecting C and E. For an illustration
that intuitions about the reliability of the observed empirical effect plays a crucial
role, contrast the two data sets tested in Lober and Shanks (2000) in which P (e|¬c)
was either 21

28
or 0

28
, while P (e|c) was 28

28
. In both cases, the point estimate for causal

power is wC = 1, but the confidence with which we can conclude that C possesses
the power to produce the effect and that it does so as strongly as suggested by the
data seems to be higher in the latter case, where P (e|¬c) = 0. It is very unlikely in
this latter case but not too implausible in the former case that all observed effects in
the presence of C were actually caused by A if the effect was never observed in C’s
absence. Interestingly, the ratings that subjects made in the P (e|¬c) = 21

28
condition

were indeed close to 0.5, in line with the hypothesis that subjects were uncertain as
to whether the data provided evidence for a positive effect. The observed positive
influence of P (e|¬c) under zero-contingencies is explained in the same way. Zero-
contingencies provide better evidence for a causal power of wC = 0 if P (e|¬c) is
low (see also Liljeholm & Cheng, 2009, who explain these effects with variations in
the virtual sample size, which is the number of entities in the C-present sample in
which the target cause factor can reveal its efficacy unambiguously). According to
the analysis of Griffiths and Tenenbaum (2005), the “frequency illusion” thus reflects
a normative reasoning strategy.

The problem that the Causal Power Theory provides only point estimates for
the strength of a causal relationship and neglects the possibility that an observed
relationship might have been observed as a result of sampling variation will be
addressed again in Chapter 5, where I discuss the implications of this problem for
the assessment of singular causation.

2.4 Summary

This chapter has introduced Cheng’s (1997) Causal Power Theory, together with
some core phenomena that the theory explains elegantly and phenomena that are
problematic for the theory. The core idea of the theory is that reasoners explain
observable events in virtue of unobservable causal powers that made these events
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happen. Moreover, it is assumed that it is the operation of unobservable causal
powers that gives rise to observable patterns of covariation, and that observable
patterns of covariation between a potential cause and effect factor can, under par-
ticular conditions, be used by reasoners as a diagnostic tool to infer the causal power
of a candidate cause factor. The causal power or strength of a candidate cause can
be operationalized as the probability with which it makes its effect happen.



Chapter 3

Applying Causal Power Knowledge
to Evaluate Singular Cases – The
Power Framework of Causal
Attribution

“How often have I said to you that when you have eliminated the
impossible, whatever remains, however improbable, must be the truth?”

- Arthur Conan Doyle, stated by Sherlock Holmes in The Sign of Four

We have seen how a reasoner can learn the causal power with which a target
cause tends to generate its effect from a set of observations that track the covariation
between a target cause and target effect factor. In the present chapter, Cheng and
Novick’s (2005) Power Framework of Causal Attribution will be introduced, which
represents a computational account telling us how this knowledge about the power
of candidate causes ought to be applied to determine causality in singular cases in
which it is known that the effect has actually occurred. We will first see how the
framework works and which principles that seem to be important for the assessment
of singular causation it is acknowledging. We will then turn to what I propose is its
conceptual weak spot, the incapability to account for cases of causal preemption.

For a better illustration, it will be helpful to have again a concrete example. Let
us imagine we get to know a particular person, Suzy. What we know about Suzy
is that she was a volunteer in our fictitious study (the results of which are depicted
in Figure 2.1) in which it was investigated whether the newly developed medicine
can cause headaches as a side effect. What we also know about Suzy is that she is
suffering from headaches, and we now wonder whether her episode of headaches has
occurred because she took the new medicine. In particular, what we want to know
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in this case seems to be: what is the probability, or, to use the Bayesian reading of
probability, the degree to which we can believe, that her suffering from headaches is
due to the medicine and not due to something else. What we have learned already is
that the medicine has a causal power of two-thirds, which means that someone not
suffering from headaches who takes the medicine can be expected to end up with
headaches with a two-thirds probability. According to the Power Framework of
Causal Attribution, this is crucial information to assess the probability with which
the observed effect is due to the target cause. However, the causal power of the
cause is obviously not the target quantity here, because we already know that Suzy
is suffering from headaches. The situation is, to use a standard terminology from
probability theory, conditionalized on the presence of the effect. Our goal is to
see how well our target cause serves as a causal explanation for this effect on this
occasion. Let us see how the Power Framework of Causal Attribution attempts to
handle this case.

3.1 Different equations for different states of knowl-

edge about the target cause

Our point of departure is a situation in which we know that the target effect factor
(E) had been instantiated (e) and the question we want to answer is how likely it is,
or, to use a Bayesian terminology of probability, how strongly we can believe that a
potential target cause factor (C) was actually causally responsible for the observed
occurrence of the effect. Cheng and Novick (2005) have proposed different equations
aiming to compute this probability, which differ with respect to the additional in-
formation about the status of the potential cause that a reasoner has. For example,
thus far all we know about Suzy is that she is suffering from headaches, whereas we
do not know whether she had been a participant who was allocated to the control
group or to the treatment group. In other words, we do not know whether the
potential cause we have under suspicion had actually been instantiated in Suzy or
not. According to the Power Framework of Causal Attribution, the probability that
Suzy’s episode of headaches is due to the medicine in this situation can be formally
written as P (c→ e|e), where the arrow that points from c to e represents a singular
or actual causal connection between the two events. This probability is supposed to
be given by the following equation:

P (c→ e|e) =
bC · wC

bC · wC + bA · wA − bC · wC · bA · wA

=
bC · wC

P (e)
. (3.1)
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Equation 3.1 shows that what we should do according to the framework in this
situation is to normalize the product of the base rate with which the target cause
occurs and its causal power by the marginal probability with which the effect occurs.
In the present example, we know that the base rate of taking the medicine is 0.5, as
half of the participants had been allocated to the treatment group and half to the
control group. Checking once again the results we can further see that the effect
occurred in thirty-two of the forty-eight subjects who took part in the study, which
yields a marginal probability of the effect of P (e) = 2

3
. We can hence calculate

that the probability that Suzy’s episode of headaches was actually caused by the
medicine is P (c→ e|e) =

1
2
· 2
3

2
3

= 1
2
. Under a Bayesian interpretation of probability,

we should be uncertain as to whether it had actually been the drug that generated
Suzy’s headaches.

Now imagine that we asked the head of the study to check and tell us whether
Suzy was part of the treatment or the control group and that the answer we get was
that Suzy had been part of the former. In this case, we could conditionalize on the
presence of the target cause factor and Equation 3.1 would turn into

P (c→ e|c, e) =
wC

wC + bA · wA − wC · bA · wA

=
wC

P (e|c) , (3.2)

the causal power of the medicine being normalized by the probability of headaches
that occur when the medication is taken. In this case the probability that the
medicine actually caused Suzy’s headache is supposed to increase from P (c→ e|e) =
1
2
to P (c → e|c, e) = 4

5
. That is, we should now conclude that her headaches have

resulted with a probability of eighty percent due to the medicine.
Equation 3.2 will be the relevant one for the subsequent conceptual analyses.

First of all, focusing on occasions on which it is known that the target cause factor
was instantiated allows us to ignore the base rate parameter of the target cause,
which simplifies the calculations. The second reason why we can focus on Equa-
tion 3.2 is that the problematic implication of the framework does not seem to be
that the probability with which a target cause is actually instantiated in the target
case should be a relevant piece of information. The noteworthy and, as will turn out,
problematic implication of the framework is that it predicts that we should say that
a potential cause event c was the singular cause of an observed effect e whenever c
has been sufficient to produce the effect on the occasion.
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Figure 3.1: Illustration of the principle behind Equation 3.2. The yellow area rep-
resents the cases in which the target cause was probabilistically sufficient to gen-
erate the effect, which are formally given by wC · [n(c, e) + n(c,¬e)]. The blue
area marks all effects that occurred when C was instantiated, formally given by
P (e|c) · [n(c, e) + n(c,¬e)]. Equation 3.2 can be understood as computing the ratio
of the yellow and the blue area.

3.2 A filter of probabilistic sufficiency

What Equation 3.2 essentially represents is a “filter of probabilistic sufficiency”, as
it identifies among all observed co-instantiations of C and E the relative frequency
of cases in which C was sufficiently powerful to generate the effect. Figure 3.1
illustrates the principle behind Equation 3.2 by means of the absolute numbers that
were depicted in the results graphic of our fictitious study. The blue area in the left
panel of Figure 3.1 marks all the effects that occurred when the target cause was
present. As our analysis focuses only on those occasions on which C was actually
instantiated, we can ignore the right panel showing what happened in the control
group. We have seen earlier that the predictive probability was P (e|c) = 5

6
, and so

the blue area comprises the twenty out of the twenty four subjects in the treatment
group who showed the effect. We also have learned that the medicine has the
capacity to produce headaches with a two-thirds probability. Therefore, we know
that the medicine was probabilistically sufficient to generate headaches in sixteen
out of the twenty-four treatment-group subjects. These cases are marked by the
yellow area in the Figure 3.1. If we now divide the number of cases contained in
the yellow area through the number of cases contained in the blue area, we obtain
16
20

= 4
5
, the quantity computed by Equation 3.2.

Another way to illustrate the output that Equation 3.2 delivers is the Euler
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diagram that we have seen earlier in Figure 2.4. Remember that all cases in which
the target cause was sufficiently powerful to generate the effect were marked there
by the dashed circle and that all the effects that occurred in the treatment group
corresponded to the white area within the two circles. Equation 3.2 can therefore
alternatively be understood as the ratio of the dotted circle’s area and the area
contained in the two circles.

3.3 What the framework seems to get right

What we can see from Equation 3.2 is that the assessment of singular causation
should focus not on the absolute but on the relative causal power of the target cause
in comparison to the prevalence and the causal power with which alternative causes
bring about the effect. This principle of the framework is in line with two sorts of
intuitions that enter the assessment of singular causation.

3.3.1 The stronger the target cause the better

One intuition that Equation 3.2 reflects is that our degree of belief in a singular
causal connection between c and e should increase if the probability with which the
target cause generates the effect increases relative to the prevalence and the power
of the background causes. Just imagine that the base rate remained as was observed
in our fictitious study but that the causal power of the medicine was not two-thirds
but, for example, five-sixths. (In this case, we would have seen twenty-two instead
of twenty patients suffering from headaches in the treatment group. In this case
Equation 3.2 would have yielded a value of 0.91.) It appears to be intuitively right
to say that we should be more convinced that c caused e on a singular occasion
observed under these conditions than under the former conditions.

3.3.2 The less likely and the weaker alternative causes the

better – Holmesian inference

Another principle that is captured by Equation 3.2 is that our degree of belief in c
having caused e on an occasion should, everything else being equal, become stronger
the lower the probability is with which alternative causes are present and the weaker
they are. This principle incorporated by the framework captures the notion that is,
for example, inherent in what the philosopher Alexander Bird (2005; 2007; 2010)
calls “Holmesian inference”, the reasoning process by which one of multiple potential
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and mutually exclusive explanations for a phenomenon is selected based on the rela-
tive probabilities of the competing explanations (see also Lipton, 2004; Lombrozo &
Vasilyeva, 2017, for related accounts on abduction or inference to the best explana-
tion). The dictum of Holmesian inference is captured by the quote at the beginning
of this chapter. Think of how the extreme case that is captured by this quote re-
lates to our scenario. Imagine that the base rate of the effect had been zero in our
fictitious study, which would indicate the absence of sufficiently powerful alternative
causes, and imagine that the medicine had still exerted its power as before. In this
case, Equation 3.2 would have delivered a value of one (and so would Equation 3.1),
in accordance with the Holmesian dictum. In philosophical terms, the model would
have concluded in this type of situation that c must have been probabilistically suf-
ficient to produce e on a singular occasion because c can be assumed to be necessary
for e to occur. What we would see in our Euler diagram in such a case would be
only the dashed circle in the left panel, illustrating that P (e|c), the denominator
of Equation 3.2, would be fully determined by the influence exerted by target cause
factor. What the Euler diagram would also reveal is that the size of the causal
power of the target cause becomes irrelevant in this case. The dashed circle could
have any circumference and yet the output of Equation 3.2 would be unaffected.

3.4 The blind spot of the framework – the possibil-

ity of causal preemption

Now that we have seen how the framework works and which aspects about the
assessment of singular causation it seems to be getting right, let us turn to what I
claim is missing in the picture – sensitivity to the possibility that the target cause
might have been preempted in its efficacy on an occasion by a potential alternative
cause.

Scenarios of preemption refer to situations in which at least two potential causes
are simultaneously sufficient to produce the effect but in which only one seems to be
the singular cause of the effect. These cases are described in philosophical literature
on causation (see, e.g., Danks, 2017; Hall, 2004; Paul, 2009; Paul & Hall, 2013;
Strevens, 2008, for overviews) under the topic of redundant causation, and they have
most intensely been discussed among philosophers who advocate a counterfactual
view of causality (see, e.g., Halpern, 2016; Halpern & Hitchcock, 2015; Hitchcock,
2001, 2007, 2009; Lewis, 1973). According to a simple counterfactual theory of
causality, a singular event c is the cause of another singular event e if it is true that
e would not have occurred if c had not occurred. Cases of preemption threaten this
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Figure 3.2: Neuron diagram modeling a situation of causal preemption (cf. Paul &
Hall, 2013). The interrupted causal arrow departing from c and the arrow connecting
a and e illustrate a situation in which c was causally preempted by a.

simple counterfactual dependence criterion of causation, whereas they appear to be
less problematic (see, however, Paul & Hall, 2013) for process or transference-based
accounts of causality (e.g., Dowe, 2000; Fair, 1979; Salmon, 1984). According to
the transference-based view of causality, causation involves the transfer of quantity
from cause to effect, where quantity, according to some accounts (e.g., Fair, 1979)
can be physical energy or, according to other accounts (e.g., Dowe, 2000), any type
of conserved quantity, such as linear momentum or charge (for an overview see, e.g.,
Dowe, 1995, or Waldmann & Mayrhofer, 2016).

One of the standard cases of causal preemption from the literature, in fact a case
belonging to a type of preemption called late preemption, goes something like this
(cf. Paul & Hall, 2013):

Two kids, Suzy and Billy, are known to be perfectly accurate rock throw-
ers. Whenever either of them decides to fling a rock towards a bottle,
the bottle shatters into pieces. On a particular occasion, it so happens
that Suzy and Billy are aiming at the same bottle and both throw their
stones with identical speed. Suzy, however, manages to throw her rock
a split second earlier than Billy. The moment Billy’s stone reaches the
location of the bottle it meets nothing but thin air.

The situation described by the scenario can be illustrated schematically with a
neuron diagram as shown in Fig. 3.2 (see Paul & Hall, 2013). Node a represents
the event “Suzy having thrown her stone” and node c represents the event “Billy
having thrown his stone”. The arrow departing from a and reaching e is supposed
to indicate that a was the singular cause of the effect. The arrow leaving from c but
not reaching e illustrates that c had been preempted in its efficacy by a.

A doctrine among philosophers who aim to work out a definition of whatever type
of concept, e.g., a reductive concept of causality, is to test whether their accounts
survive the verdict that common-sense intuition provides for a set of key situations.
As the philosopher David Lewis (1986) put it:
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When common sense delivers a firm and uncontroversial answer about
a not-too-far-fetched case, theory had better agree. If an analysis of
causation does not deliver the common-sense answer, that is bad trouble.
(p. 194)

Scenarios of causal preemption are regarded as one such key type of case. Ev-
erybody who is presented with the scenario above has the intuition that Suzy’s
rock throwing was the singular cause of the bottle’s shattering, whereas Billy’s rock
throwing is considered as a genuine non-cause. A simple counterfactual account
of causality, however, fails to identify Suzy’s rock throwing as the singular cause,
for a simple counterfactual evaluation would reveal that the bottle would still have
shattered if Suzy had not thrown her stone (for a more elaborate account that can
handle this as well as other problematic cases see Halpern & Pearl, 2005).

We have seen earlier that Equation 3.2 represents a “sufficiency filter”, for it
attributes causality to the target cause whenever the target cause is assumed to
be probabilistically sufficient on an occasion. The Power Framework of Causal
Attribution therefore has the opposite problem with situations of causal preemption.
While it would identify Suzy’s rock throwing as the singular cause of the effect in the
given example, it would fail to identify Billy’s throwing as a non-cause of the effect.
The framework tends to identify events as singularly caused by c that actually seem
to be solely due to an alternative cause a. That is, the model is too permissive
when it comes to the assessment of singular causation. The failure to detect this
asymmetry between the potential causes is a result of the framework’s focusing solely
on static information about the relative causal powers of the potential cause factors,
while it neglects that temporal information also seems to be crucial. The types of
temporal information that are relevant will be introduced in the next chapter.

Importantly, the possibility of causal preemption does not only occur when the
potential cause factors operate with deterministic causal powers, as was the case in
the illustrative rock-throwing scenario. Rather, the possibility of preemption occurs
whenever two potential cause factors are sufficiently powerful on an occasion. We
have seen in our example about the fictitious new medicine that such occasions are
assumed by the framework to arise also in the context of probabilistic causal powers.
In the Euler diagram that was introduced, the cases in which the target cause and
the alternative cause factors were simultaneously probabilistically sufficient for the
effect were those cases enclosed by the overlap of the two circles. My proposal is
that, if we had a “causal microscope” and could zoom into this overlap, we would
find that it consists of three different types of cases1: cases in which the target

1It is important to note here that the framework considers the cause and effect factors to be
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Figure 3.3: The singular causal structures (middle panel) that are compatible with
(1) the general causal structure (bottom panel) assumed by the power framework
and (2) with a singular observation (top panel) in which c and e have co-occurred.

cause preempted the potential alternative cause, cases in which the alternative cause
preempted the target cause, or cases in which the target and the alternative cause
exerted their causal powers symmetrically, a type of redundant causation that in
the philosophical literature is called “symmetric overdetermination”. Whether two
causes ever exert their powers perfectly symmetrical or whether we would find slight
deviations if we zoomed in further is debatable, however. The different singular
causal structures that are compatible with the general causal structure and with
our example singular case Suzy are shown in Figure 3.3. The singular cases that
correctly enter into P (c→ e|c, e) have Singular Structures 1, 2, 3, and 5. The cases
that are correctly excluded by Equation 3.2 are those exhibiting Singular Structure
6. The problem of Equation 3.2 is that it cannot distinguish between the three
different singular structures of which the sufficiency overlap can be composed. By
failing to exclude situations in which c was preempted by a (captured by Structure 4
in the Figure) from the estimation of P (c→ e|c, e), the model tends to overestimate
the probability with which c and e were actually causally connected on a singular
occasion.

The degree to which Equation 3.2 overestimates P (c → e|c, e) depends on two
factors: the size of the sufficiency overlap between C and A and the prevalence
of situations in which c was preempted by a within the sufficiency overlap in a

binary variables that can either be present or absent. The factors involved in the medicine-headache
scenario could also be plausibly represented on a continuous scale. In this case it would probably
be more natural to think of an additive rather than a logical-OR combination of the potential cause
factors, and intuitions regarding the possibility of causal preemption would probably be different.
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Figure 3.4: Illustration showing that the preemptive relation between target cause
and alternative causes is conceptually unproblematic for the estimation of causal
power.

particular context. Consider again the results of our fictitious medical study. We
have seen there that the alternative causes produced the effect with a fifty percent
probability in the control group. Accepting the independence assumption of the
theory, we have seen that we should conclude that the alternative cause factors also
were sufficiently powerful enough in fifty percent of the cases in the treatment group.
This implies that there is a sufficiency overlap of 1

2
· 2
3

= 1
3
, that is, it can be expected

that there are eight patients in the treatment group in which the medicine and the
alternative factors were simultaneously sufficient to produce the effect. These cases
are all attributed to the target cause by Equation 3.2, which implies that we should
conclude that the medicine caused headaches in a singular case with a probability
of eighty percent. However, in the extreme case in which the alternative factors
fully preempted the target cause in its efficacy, the probabilistic overlap of 1

3
should

be attributed away from the target cause. P (c → e|c, e) would be cut in half and
reduce to 0.40 in this case.

3.4.1 Preemption and the assessment of causal power

It was argued above that the possibility of causal preemption poses a problem for
the assessment of singular occasion. It is important to note, however, that the
preemptive relation between the potential causes of the effect does not, at least not
theoretically, threaten the assessment of the general causal power of the target cause
factor (Equation 2.6). As long as the assumption holds that C and A occur with
independent base rates and as long as it is true that the two cause factors generate
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the effect with independent causal powers, the preemptive relation between C and
A does not affect the output delivered by Equation 2.6. Figure 3.4 is supposed to
illustrates this by means of the two extreme scenarios of causal preemption. The left
panel depicts the theoretically possible situation in which the alternative causes A
produced their effects with bA ·wA = 0.50 at time t0, that is, even before the clinical
intervention was carried out at time t1, whereas the causal power of the medicine did
not become effective until t2. This scenario represents a type of preemption called
“early preemption” in the literature (cf. Hitchcock, 2007), because one cause factor
produced its effect even before the other cause occurred. The right panel depicts the
situation in which the medicine exerted its power at t1 before any alternative causes
took effect. The left scenario is one in which the application of Equation 3.2 leads
to a maximal overestimation of P (c → e|c, e), whereas the other extreme scenario
on the right is the one in which Equation 3.2 seems to be correct. What can be seen
is that the “endstates” at t2, however, are exactly identical in the two situations,
which shows that the estimation of the causal power of the target cause obtained
by applying Equation 2.6 is unaffected by the different cause factors’ preemptive
relation2.

3.5 Summary

This chapter has introduced Cheng and Novick’s (2005) Power Framework of Causal
Attribution, which shows how knowledge about the strength of the potential causes,
operationalized as causal power (Cheng, 1997), ought to be applied to assess causa-
tion in singular cases. It was shown that the Equations of the framework consider
the relative causal power of the target cause and of the potential alternative causes
to estimate the probability with which a particular target cause factor C was the
singular cause of an observed effect E. This probability can also be understood in
the Bayesian sense as the degree to which a reasoner can believe that a potential
cause event c has caused the observed effect event e on an occasion. We have seen
that the model captures the intuition that a target cause that brings about its ef-
fect relatively reliably should elicit a higher degree of belief that it was causal on
a singular occasion than a target cause that is known to work relatively unreliably.
It was also shown that the model incorporates the normative principle of abduc-

2While the principal validity of the causal power equation is not threatened by the preemptive
relation between C and A, Figure 3.4 reveals that it may pose a practical problem, however.
Figure 3.4 reveals that causal power should not be assessed before a causal end state has been
reached in a context. A problem seems to be how, without a priori knowledge, one can know at
what time this will be the case.
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tive explanation, as it predicts that one can be certain that a particular factor was
the singular cause of the observed effect, no matter how strong or weak this cause
generally tends to bring about the effect, if alternative causes can be ruled out on
an occasion. The problem of the framework, I have argued, is that its equations
equate probabilistic sufficiency with causality, and as a consequence fail to account
for the possibility of causal preemption. Causal preemption, mostly debated among
Causal Counterfactualists, refers to types of situations in which multiple potential
causes are simultaneously sufficient for the effect, but only one of them is considered
to be the singular cause. Scenarios of preemption reveal that more is needed than
knowledge about the potential causes’ causal powers to be certain that an effect was
singularly caused by the cause one has under suspicion. In the following chapter I
will propose a generalization of Cheng and Novick’s framework that is capable to
handle the problem of causal preemption. The core idea of my proposal will be
that knowledge about the temporal relation between the potential causes needs to
be incorporated and combined with causal power information. The combination of
causal power and temporal information enables us, so to say, to obtain an inferential
version of “the causal microscope” that was mentioned above, with which we can
disentangle what happens in the causal sufficiency overlap.



Chapter 4

A Generalization of the Framework
Sensitive to Causal Preemption

“Time is what keeps everything from happening at once.”

- Ray Cummings The Girl in the Golden Atom

I argued that when a target cause and an alternative cause of an observed effect
were simultaneously powerful enough to produce the effect on an occasion it needs to
be decided whether the target cause was preempted in its efficacy by the alternative
cause or not. If it was preempted, it should not count as the singular cause of
the effect. We have seen that the equations of the standard Power Framework
of Causal Attribution cannot handle this problem because they focus solely on the
relative causal power of the target cause. The standard model seems to make correct
predictions only in contexts in which the probability with which alternative causes
preempt the target cause is zero. In the present chapter it will be argued that, to
account for the possibility of causal preemption, what needs to be incorporated by
the equations in addition to information about the powers of the potential causes is
information about their temporal relations. I will present a refined model in which
causal power and temporal information are combined to compute the probability
with which the target cause was preempted by an alternative cause. I will first
introduce the proposed refined equation and then elaborate on the different temporal
components that are supposed to enter it.

4.1 A generalized model sensitive to preemption

The central idea is that the model proposed by Cheng and Novick (2005) can be
extended so that those occasions on which the target cause was preempted by an
alternative cause are attributed away from the target cause. It is sufficient to focus
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again on the situation where the potential cause factor C and the target effect factor
E are both known to have occurred. The refined equation computing P (c→ e|c, e)
I would like to propose is:

P (c→ e|c, e) =
wC − wC · bA · wA · α

wC + bA · wA − wC · bA · wA

=
wC · (1− bA · wA · α)

P (e|c) . (4.1)

As can be seen, this equation extends Equation 3.2 by a new term that was added
to the numerator, wC · bA · wA · α. This term is intended to capture the probability
with which the target cause was preempted by the alternative cause on an occasion.
The product of wC , bA, and wA identifies the sufficiency overlap of the potential
causes. This product is relevant because, as we have seen earlier, the possibility of
causal preemption can occur only on occasions on which the potential causes are
simultaneously powerful enough to generate the effect (see Figure 3.3). The new
parameter α represents an allocation parameter, 0 ≤ α ≤ 1, which partitions the
sufficiency overlap of the potential causes such that the proportion of the sufficiency
overlap is determined that needs to be “taken away” from the target cause. As
the product wC · bA · wA · α is supposed to capture the probability of preemption
of the target cause by the alternative causes, it has to be subtracted from wC in
the numerator. For example, the extreme case in which a reasoner is certain that
an alternative cause preempted the target cause in its efficacy on an occasion on
which target and alternative cause were simultaneously sufficient can be modeled by
setting the α parameter to 1. By setting alpha = 1, the whole sufficiency overlap
of the potential causes is attributed away from the target cause. The other extreme
case in which a reasoner is certain that alternative causes did not preempt the target
cause on an occasion of simultaneous sufficiency can be modeled by setting α to 0.
In this case, Equation 4.1 reduces to the standard model (Equation 3.2) proposed by
Cheng and Novick (2005).

4.2 Temporal information determines the Alpha pa-

rameter

The central idea of the new model is that the value of the α parameter is determined
by knowledge about the temporal relation between the potential causes of the effect.
For simplification, let us focus first on the type of situation that is given in the
philosophical standard examples of preemption, which concerns scenarios in which
the set of potential causes of the target effect contains only two elements, the target
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cause factor C and one alternative cause factor A, and in which both potential cause
factors are known to have been instantiated (in this case, the base rate parameter
of the alternative cause can be set to 1 in Equation 4.1 and P [c → e|c, e] becomes
P [c→ e|c, a, e]), and their causal powers wC and wA have already been learned.

4.2.1 Onset difference

The rock-throwing scenario introduced earlier suggests that one type of temporal
information that should be relevant for the assessment of the probability of causal
preemption is information about the onset time difference of the potential causes.
Everything else being equal, if a occurs earlier than c on an occasion on which both
happen to be probabilistically sufficient for the effect, then a can be assumed to
preempt c in its efficacy. Conversely, c can be assumed to preempt a when c occurs
earlier than a on an occasion of simultaneous sufficiency. Formally, the instantiation
times of two potential causes c and a can be denoted tc and ta, and the difference
between these onset times can be denoted ∆t = ta − tc. A schematic illustration
using time indexed neuron diagrams is depicted in Figure 4.1 A). The onset times
of the respective events is depicted on the x-axes in the Figure. It can be said that
if two potential causes c and a are sufficiently powerful on an occasion, c preempts
a in causing e when ∆t is positive. Conversely, a preempts c in causing e when ∆t

is negative. A generic-level representation ∆T can be obtained through averaging
over multiple observations in which ∆t is computed.

4.2.2 Causal latency

A second type of temporal information that is relevant for the assessment of the
α parameter is information about the cause factors’ causal latencies. By causal
latency I mean the time that it takes a cause factor to unfold its causal power, which
formally can be denoted tC→E (cf. Bramley, Gerstenberg, Mayrhofer, & Lagnado,
2018). For example, taking an aspirin cannot be expected to bring relief right away.
It first needs to be dissolved by gastric acid in the stomach, then must enter into the
bloodstream, and finally must reach tissue where it can inhibit the production of
prostaglandins. In our rock-throwing example, the causal delay with which Suzy’s
throwing her rock led to the bottle’s shattering depended on the speed of the rock
and the distance it had to travel until it reached its target. As another example, if
we enter an elevator and press a button, we will notice that the doors do not shut
immediately. Modern elevator systems possess a particular pre-programmed delay
with which button presses become effective. Even pressing the on-button on the
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Figure 4.1: Illustration of the temporal components relevant for the assessment of
the preemptive relation between two potential causes of an effect. A) illustrates
the relevance of the instantiation times of the potential causes. B) illustrates the
relevance of the causal latencies of the potential causes.

remote control does not turn on the TV instantaneously, the light signal first has to
gap the distance between the remote control and the receiver.

An important characteristic of causal latencies is that they are, like causal pow-
ers, unobservable properties of causes. The causal latency of a cause factor C must
be inferred from multiple observations of the onset differences between singular in-
stantiations of C and E. Only in an environment that is shielded from potential
alternative causes do the observed onset differences between C and E represent a
direct measure of the causal latency of C, just like ∆P provides a direct measure of
the causal power of a target cause factor only when the learning context is shielded
from the influence of alternative factors (i.e., when the base rate of the effect is
zero). The remote control and the pain killer scenario are good illustrations for this.
Whereas TVs rarely turn on if we do not press the button on the remote control,
headaches typically subside after a while even without the help of aspirin. Both the
causal power as well as the causal latency of the painkiller are harder to learn than
the causal power and the causal latency of the remote control.

Neuron diagrams illustrating the relevance of causal latency for preemption are
depicted in Fig. 4.1 B. The figure illustrates that, everything else being equal, a
probabilistically sufficient potential cause c of the effect e preempts a simultaneously
sufficient potential alternative cause a on an occasion if c’s causal latency is smaller
than a’s. Conversely, a preempts c in causing e if a’s causal latency is smaller than
c’s on such an occasion. Causal latency here refers to the hypothetical time it would
have taken a cause to produce the effect if it had acted in isolation.

Of course, the “everything else being equal” criterion will only rarely, maybe
never, hold in real life situations. On most occasions different onset times will be
combined with different causal latencies, which leads to the possibility that causes
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with high causal latency can still preempt alternative causes if they have an onset
advantage on their side. Likewise, causes that occur after their competitors can still
manage to preempt them if they have a small causal latency. Onset difference and
causal latency are assumed to be compensatory temporal factors.

A number of studies that have investigated the role of time in causal reasoning
(e.g., Bramley et al., 2018; Buehner & May, 2003; Griffiths & Tenenbaum, 2009;
Hagmayer & Waldmann, 2002; Lagnado & Sloman, 2004, 2006) have shown that
reasoners are sensitive to causal latency (see Buehner, 2017, for a recent review). In
an early study, Shanks, Pearson, and Dickinson (1989), for example, showed that
subjects who experienced a noticeable temporal gap between a potentially causal
action and the occurrence of the potential effect had lower impressions of a causal
connection between action and outcome than subjects who experienced that out-
come succeeded the action in a highly contiguous manner, in line with the idea
that short causal delays are advantageous if everything else can be assumed to be
constant. Later studies revealed that the contiguity effect indeed interacts with
reasoners’ background assumptions about the causal mechanism relating cause and
effect factor (e.g., Buehner & McGregor, 2006; Hagmayer & Waldmann, 2002). In
studies in which subjects were provided with causal mechanism information that
made a delay plausible, the preference for short delays either diminished or some-
times even reversed. For example, in one study Buehner and McGregor (2006)
confronted subjects with an unfamiliar apparatus in which marbles running down
a path way could activate different switches connected to a light bulb. During an
inspection phase, the steepness of the pathways within the machine was varied and
thus either suggested a relatively small or a relatively large delay between marble
insertion and activation of light. During the test phase, the mechanism part of the
device was covered and subjects observed multiple instances of marble insertion and
light activation. The observed delays were either compatible or incompatible with
previously learned causal mechanism. The results showed that subjects who ob-
served highly contiguous successions of events only gave high causality ratings when
the mechanism in fact suggested short delays, while causality ratings were low when
subjects expected the delay to be longer. Hagmayer and Waldmann (2002) showed
that background assumptions about causal delays constrain causal learning based
on purely statistical information.

The results of a study conducted by Lagnado and Speekenbrink (2010) pro-
vides evidence that the on average adverse effect of relatively high causal latencies
on causal judgments might indeed be explained by subjects’ assumptions about
the preemptive relation between target cause and potential alternative causes in
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the observed singular instances during learning. In their experiment, Lagnado and
Speekenbrink (2010) varied the causal latency of the target cause factor and the prob-
ability with which alternative causes of the effect occurred during the cause-effect
interval. This experimental design allowed to compare causal judgments between
conditions with equal causal latencies but varying probabilities with which potential
alternative causes occurred before the instantiation of the effect. Causal judgments
tended to be lower when the probability of alternative causes occurring before the
onset of the effect was high but not when this probability was low. An explanation
for this difference is that the occurrence of alternative causes before the occurrence
of the effect opens up the possibility that the target cause was preempted, while on
occasions on which the alternative causes tended to occur after the effect preemption
of the target cause can be safely ruled out. Moreover, Lagnado and Speekenbrink
(2010) showed that variation in causal latency alone did not affect causal judgments.

4.2.3 Modeling causal latencies

The examples discussed above about the elevator or about the light traveling from
the remote control to the receiver show that it might sometimes be appropriate
to represent the causal latency of a cause factor as a stable, fixed value. In most
contexts, however, causal latencies will be much less reliable and exhibit variation.
The Aspirin case provides an example for such a context. A dose of medication might
be expected to take effect after about twenty minutes, but we would probably not be
too surprised if the effect occurred a bit earlier or a bit later. In most contexts it thus
seems appropriate to represent the causal latency of a factor not as fixed value but
as a random variable following a particular distribution. Variation in causal latency
might be causally explained by the operation of unobserved hasteners or delayers (cf.
Lagnado & Speekenbrink, 2010). For example, the time it takes an Aspirin to bring
relief on a singular occasion is influenced by the state of various factors, such as the
momentary concentration of gastric acid in the person’s stomach, her momentary
blood pressure, and so on.

A standard way of modeling latencies that exhibit variation is to use gamma dis-
tributions. Gamma distributions are, for example, used in queueing theory to model
waiting times (Shortle, Thompson, Gross, & Harris, 2018). Bramley et al. (2018),
who investigated the role of time in general-causal structure induction, used gamma
distributions in their study to model the causal latency of cause factors. The gamma
distribution belongs to the family of continuous probability distributions and repre-
sents a generalization of the exponential distribution. It is characterized by two pa-
rameters: shape, κ > 0, and scale, θ > 0. If gamma distributions are used to model
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Figure 4.2: Example of gamma distributions with different shape (κ) and scale (θ)
parameters. The expected value of a gamma distribution is given by E[X] = κ · θ.
The expected values of the example distributions are illustrated by the vertical lines.

causal latencies, the expected value of the causal latency of a cause factor, tX→Y , is
E[tX→Y ] = κ · θ. The variance of the causal latency is V ar[tX→Y ] = κ · θ2. Different
gamma distributions that are supposed to depict the causal latencies of different
cause factors are shown in Fig. 4.2 (temporal units represent ms in this example).
The higher the expected value of a distribution, the slower a cause is expected to
generate its effect. The larger the variance of a distribution, the less predictable
the time of the occurrence of the effect becomes. Extremely reliable causal laten-
cies, i.e., distributions that are highly centered around E[tX→Y ], can be modeled by
holding E[tX→Y ] fixed and letting κ→∞. In Figure 4.2, the left two causal latency
distributions have an expected value of E[tX→Y ] = 2000ms but different variability
and the right two distributions have an expected value of E[tX→Y ] = 3000ms but
different variability.

4.2.4 A formalization of the Alpha parameter

The formalization of the different temporal components that influence the probabil-
ity of preemption allow it to quantify α for different types of situations. I will focus
again on the type of situation that we have already considered above, in which it is
known that the two potential causes factors C and A and the effect factor E have
co-occurred (c, a, e) on an occasion. Moreover, we consider contexts in which the
causal latencies of the potential cause factors (tC→E, tA→E) and the onset difference
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on the particular occasion (∆t) have been learned. In this case the probability that
the target cause c was preempted by the alternative cause a if both happen to be
simultaneously sufficient for the effect corresponds to:

α = P (ta→e + ∆t < tc→e|e, c, a). (4.2)

In this type of situation α is the probability that the sum of the causal latency of
the competing cause factor A and the time lag between c’s and a’s onset times is
smaller than the causal latency of C, given e, c, a.

4.2.5 Approximating alpha with a Monte Carlo algorithm

When the causal latencies can be represented as fixed values, like in the elevator
example, α can be determined by comparing the simple sum of ta→e and ∆t with
tc→e. In this case, α will either be 0 or 1. In the more complicated case in which
the causal latencies exhibit variability and are modeled with gamma distributions, α
can take on any value between 0 and 1. In this case, the value of α can be estimated
with the following Monte Carlo (MC) algorithm:

1. Sample N pairs of causal latencies (tc→e, ta→e) from the latency distributions
(tC→E, tA→E) of C and A, respectively.

2. Calculate ta′→e = ta→e + ∆t for all sampled ta′→e-values.

3. Count all pairs for which ta′→e < tc→e.

4. Divide this count by N .

For an illustration, let us assume that the causal latency of the target cause C,
tC→E, followed the gamma distribution with the parameters κ = 10 and θ = 200 in
Fig. 4.2, and that the causal latency of the alternative cause A, tA→E, corresponded
to the distribution with the parameters κ = 30 and θ = 100. The expected value of
the target cause’s causal latency is E = κ · θ = 2000ms, while causal latency of the
alternative cause has an expected value of E = κ · θ = 3000ms. Hence, the target
cause tends to unfold its causal capacity quicker than its competitor. However, it
can be seen that there is also an overlap between the two causal latencies. This
overlap implies that, among all occasions on which both causes have identical onset
times, there will be several cases in which the alternative cause outperforms the
target cause. The α parameter captures the probability with which this happens.
For occasions on which the two causes occur simultaneously (i.e., ∆t = 0) the MC
algorithm presented above yields a value of α = 0.12 for this pair of distributions.
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That is, the probability that a acts quicker than c on a singular occasion on which
the causes have identical onsets is twelve percent. Now consider the case in which
the causal latencies are much more reliable and follow the two strongly peaked dis-
tributions. In this case, the probability that the target cause is preempted by the
alternative cause reduces to α = 0.0001 and becomes negligibly small. Finally, con-
sider the case in which the target cause and the alternative cause not only occurred
at the same time but in which their causal latencies followed the same gamma distri-
bution. In this case where the two latency distributions fully overlap, the algorithm
introduced above yields a value of α of 0.50, because in the set of randomly sampled
pairs of causal latencies the causal latency of the alternative cause would be smaller
in half of the pairs.

4.3 What if alternative causes are unobserved

We have thus far discussed the type situation in which there exist only two potential
cause factors of the effect, C and A, that both are known to have been instantiated
in the target situation. In this type of situation, temporal information about the
onsets of the potential causes and about their causal latency modeled as gamma
distributions should be used to determine α. A question is whether α can also be
determined in situations in which there exist multiple alternative causes of the effect
that have remained unobserved. To estimate α in this case, what we would need
to represent is the temporal distribution of the base rate of the effect. One idea is
that the temporal distribution of the base rate of the effect can be modeled with
exponential distributions, which represents a special case of the gamma distribution
in which the shape parameter κ is set to 1. Modeling the temporal distribution
of the effect’s base rate with exponential distributions seems appropriate because
the exponential distribution has been described as “memoryless”(cf. Bramley et al.,
2018), which means that the expected value with which the target outcome occurs
over time remains constant. It does neither depend on previous occurrences of the
target outcome nor on the onset times of the generative process. All other types of
gamma distributions, by contrast, introduce a temporal dependence of the outcome
on the modeled onset time of the generative process. If the temporal distribution of
the effect’s base rate is modeled with an exponential function and the causal latency
of the target cause follows a known gamma distribution, ∆t can be set to 0 and
the same sampling algorithm as before can be used to determine the value of α. A
graphical illustration of how different values of α can result in this type of context
is shown in Figure 4.3, where two different gamma distributions (κ = 10, θ = 100
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Figure 4.3: Examples of gamma and exponential distributions. Exponential distri-
butions can be used to model the temporal distribution of the base rate of the effect
when alternative causes of the effect are unobserved.

and κ = 50, θ = 100) and two different exponential distributions (κ = 1, θ = 3000

and κ = 1, θ = 7000) are depicted. For example, in a context in which the temporal
distribution of the base rate of the effect follows the exponential distribution with
the parameters κ = 1 and θ = 3000, an effect can be expected to occur after
three seconds whenever an unobserved alternative cause is sufficiently powerful to
generate the effect on an occasion. Imagine that the target cause’s causal latency
followed the left gamma distribution in the Figure (κ = 10, θ = 100). For this
pair of distributions, α would be 0.28, indicating that the target cause tends to
be preempted in its efficacy of producing the effect on about thirty percent of all
occasions on which the target and an alternative cause are simultaneously powerful
enough. If the target cause acted with a much slower latency of κ = 50 and θ = 100,
this probability would increase to α = 0.81. Now consider the case where the base
rate distribution followed the exponential distribution with κ = 1 and θ = 7000. In
this case, if the target cause’s causal latency followed the first gamma distribution,
α would be 0.13, whereas it would be 0.51 its causal latency followed the second
gamma distribution. This example illustrates in a formal way why small causal
latencies of the target cause are always “preferable” in contexts in which alternative
causes remain unobserved.
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4.4 What if temporal information is not available

Another question that arises in the context of the present analysis is what should be
done in the absence of any temporal information. For example, in our scenario about
the fictitious medicine that can cause headaches as a side effect, all information that
was available was statistical information that allowed to compute the causal powers
of the potential causes. We have seen in this chapter that α should take on a
value of 1 to model situations in which a reasoner is certain that the target cause
was preempted by an alternative cause. One idea for situations in which temporal
information is absent and in which a reasoner is uncertain about the preemptive
relation of the potential causes is to set α to 1 here, too. In a context in which
temporal information is absent, the output of Equation 4.1 obtained with α being
set to 1 can be interpreted as an estimation of the lower boundary of the probability
with which c caused e on an occasion. P (c→ e|c, e) obtained by setting α = 1 can
thus be regarded as a conservative estimate of the probability with which c caused e.
Another possibility would be to compute P (c→ e|c, e) under α = 1 and α = 0 and
to determine the range between the two values. Under a Bayesian interpretation, the
estimation obtained under α = 1 would represent the minimal degree of belief that
c caused e and the estimation obtained under α = 0 would represent the maximal
degree of belief in c having caused e on the target occasion. Equation 4.1 shows
that the range between the two values is determined solely by the size of the causal
power overlap of the potential causes.

4.5 Summary

The present chapter introduced a generalization of Cheng and Novick’s (2005) Power
Framework of Causal Attribution that incorporates the possibility of causal pre-
emption of the target cause by an alternative cause. The refined model that was
proposed contains a new term that represents the probability with which the tar-
get cause was preempted. It was argued that the assessment of the probability
of preemption requires the combination of two types of information: information
about causal power and temporal information. Information about causal power is
relevant because the problem of preemption cannot occur unless multiple causes are
simultaneously powerful enough to produce the effect. On occasions of simultaneous
sufficiency, temporal information is necessary to determine whether the target cause
was preempted or not. Temporal information is supposed to be captured by a newly
introduced parameter α. Two types of temporal information that are considered to
be relevant for the determination of α were then introduced; information about the
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potential causes’ onset times and about their causal latencies. Causal latency is the
time it takes a cause to produce its effect, which must be inferred from multiple
observations that track the delay between cause and effect onset. A formalization of
the α parameter was then provided that allows it to test quantitative predictions of
the new model. In Chapter 6 I will summarize the results of a set of studies (Stephan
et al., submitted, see Appendix B) in which crucial predictions of the new model
were empirically tested. Finally, for contexts in which temporal information is not
available, it was suggested that α should take on a default value of 1. The reason
is that the predictions obtained by the new model in this case can be interpreted
as a conservative estimate of the probability with which c caused e on the target
occasion.



Chapter 5

Incorporating General Causal
Structure and Parameter
Uncertainty

“We sail within a vast sphere, ever drifting in uncertainty, driven
from end to end.”

- Blaise Pascal

The incapability of the standard Power Framework of Causal Attribution to
handle causal preemption was characterized in the previous chapter as a conceptual
problem of the framework, which, as we have seen, is due to the fact that the
framework attributes causality to the target cause whenever the target cause can be
assumed to be sufficiently powerful for the generation of the effect on an occasion.
We have seen in the last chapter that this conceptual shortcoming can be remedied
by incorporating temporal information. Another problem of the Power Framework
of Causal Attribution is that its predictions are based solely on point estimations of
the causal power parameters obtained directly from the observed data (see Griffiths
& Tenenbaum, 2005, 2009; Holyoak, Lee, & Lu, 2010; Meder & Mayrhofer, 2017;
Meder et al., 2014). The framework thus fails to take into account that sample-based
inferences are always associated with varying degrees of uncertainty (we have seen in
Chapter 2 that, as a consequence, causal power cannot, for instance, explain different
intuitions about zero-contingencies in which the base rate of the effect varies). The
focus of this chapter will be to show how inferential uncertainty can be incorporated
by the model. The result is an extension of the model that I developed based on
the Structure Induction Framework proposed by Meder et al. (2014). The resulting
model is called the Structure Induction Model of Singular Causation Judgments.
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Table 5.1: Different sets of observations for which the Power Framework of Causal
Attribution predicts maximum values of P (c → e|c, e) because the effect is some-
times observed in the target cause’s presence but never in its absence.

Observations Point estimations

N(c, e) N(c,¬e) N(¬c, e) N(¬c,¬e) wC bA · wA P (c→ e|c, e)
Data Set 1 2 6 0 8 0.25 0 1
Data Set 2 4 4 0 8 0.50 0 1
Data Set 3 6 2 0 8 0.75 0 1
Data Set 4 24 24 0 48 0.50 0 1

To illustrate the relevance of “inferential uncertainty” for judgments of singular
causation, let us consider the different contingency data sets that are listed in Ta-
ble 5.1. We can again assume that these were the results of different fictitious studies
investigating the causal capacity of a medicine to lead to undesirable side effects. In
all data sets the effect was never observed in the absence of the cause (n[¬c, e] = 0),
whereas the probability with which it occurred in the cause’s presence, P (e|c), in-
creases from 0.25 in Data Set 1 to 0.50 in Data Set 2, to 0.75 in Data Set 3. Data
Sets 1 to 3 contain 16 observations. In Data Set 4, 48 cases were observed and
P (e|c) = 0.50, like in Data Set 3. The point estimations of the relevant causal
parameters are depicted in the right part of Table 5.1. Imagine we had observed the
contingency contained in Data Set 1 and now encountered a singular case in which
C and E have been co-instantiated (c, e). How confident would we be under these
conditions that c was the singular cause of the observed e? The right column of Ta-
ble 5.1 shows the predictions of Cheng and Novick’s (2005) Power Model of Causal
Attribution. We see that the model predicts that we should be certain that c and
e were causally connected in this situation, as P (c → e|c, e) = 1. Importantly, the
generalized model that was introduced in the previous chapter makes identical pre-
dictions in this case, as the new term in the numerator of Equation 4.1 is zero. We
have earlier seen that the model makes this prediction here because it assumes that
alternative cause factors of the effect do not exist in the present context (bA ·wA = 0)
and that the target cause factor C is necessary for the generation of the effect. The
problem that has thus far not been addressed is how confident we can be based on
the given sample of observations that C really has the causal power suggested by
the point estimations obtained from applying Equation 2.6 to the data, and that
alternative causes are indeed not at play (i.e., that bA · wA = 0). After all, the
sample of Data Set 1 contains only 16 observations and the observed effect is rather
small, which suggests that we cannot be too confident that the point estimate of
0.25 for C’s causal power is reliable. The observed results do not seem to be too



5. INCORPORATING STRUCTURE AND PARAMETER UNCERTAINTY 46

unlikely to have occurred from mere sampling variation, which would imply that
the true causal power of the target cause is zero and that the observed effects were
actually produced by the alternative causes. Intuitively, this uncertainty regarding
the reliability of the sample information should lead to a more cautious singular
causation judgments. Now imagine we had instead observed the higher contingency
of 0.75 in Data Set 3. The model makes the same prediction in this case but, due
to the higher empirical effect, the data seem to provide better evidence that the
target cause possesses the causal power to generate the effect and that alternative
causes can be ruled out in the given context. Now consider Data Sets 2 and 4. In
both cases the contingency is 0.50 but the sample of Data Set 4 contains six times
as many observations and should thus be regarded as more reliable.

What the previous example cases demonstrate is that our degree of belief in
a singular causal connection between an observed co-instantiation of target cause
factor C and target effect factor E seems to depend on how strongly the assumptions
we make about the general causal relation between C, A, and E are supported by the
observed data. Importantly, it has been argued (cf. Griffiths & Tenenbaum, 2005;
Meder et al., 2014) that these assumptions may concern both the causal parameters
that enter into the equations as well as the general causal structure assumed to
underlie the observed data.

5.1 Incorporating causal parameter uncertainty

To account for the problem of inferential uncertainty, Holyoak et al. (2010) have
proposed a Bayesian variant of Cheng and Novick’s (2005) Power Model of Causal
Attribution (Equation 3.2). Unlike the standard model that merely relies on point
estimations of the causal parameters that are derived directly from the data, the
Bayesian extension of the model proposed by Holyoak et al. (2010) uses probabil-
ity distributions over the causal parameters of the general common-effect causal
structure assumed by Cheng’s (1997) Causal Power Theory. The model incorpo-
rates inferential uncertainty about the causal parameters by using uninformative,
flat prior distributions over the causal structure’s parameters that are updated in
light of the observed contingency data.

5.2 Incorporating general-causal structure uncertainty

Recent work by Meder et al. (2014) suggests, however, that the incorporation of
uncertainty about the causal parameters of a fixed general causal structure might
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Figure 5.1: The two causal structures considered by the Structure Induction Frame-
work as mutually exclusive explanations for observed patterns of covariation. C is a
general cause of E under S1, whereas all co-occurrences of C and E are coincidental
under S0.

not be sufficient to account for people’s causal inferences (though see Lu, Yuille,
Liljeholm, Cheng, & Holyoak, 2008). Relying on previous work by Griffiths and
Tenenbaum (2005), Meder et al. (2014) developed and tested a new computational
model, the Structure Induction Model, which in addition to parameter uncertainty
also incorporates uncertainty about the general causal structure. The two general
causal structures considered by the Structure Induction Model as alternative causal
hypotheses explaining the observed data are shown in Figure 5.1 (see also Griffiths
& Tenenbaum, 2005). Structure S1 is the common-effect structure assumed by the
standard Causal Power Model and by the Bayesian attribution model of Holyoak et
al. (2010). S0 represents a causal structure in which the causal arrow connecting C
and E is missing. S0 captures the causal hypothesis according to which all observed
co-occurrences of C and E are coincidental and all observed effects are actually
caused by alternative causes A. The framework uses Bayesian inference over causal
models (see Griffiths, Kemp, & Tenenbaum, 2008, for an overview) to assess which
general causal structure is more likely to account for the observed data.

Meder et al. (2014) did not investigate general causal structure and parameter
uncertainty in singular causation judgments, however, but in diagnostic judgments.
Diagnostic judgments are formally captured by P (c|e). Unlike singular causation
judgments that express how likely it is that an observed effect was actually caused
by a target cause factor C (denoted by the causal arrow between c and e in P [c→
e|e] or P [c → |c, e]), diagnostic judgments refer to the probability with which a
potential cause factor C was co-instantiated with an observed effect e on an occasion.
According to the Causal Power Theory, P (c|e) also includes cases in which e was
actually caused by an alternative cause. Meder et al. (2014) demonstrated that
reasoners’ diagnostic judgments are influenced not only by the empirical probability
of P (c|e) computed directly from the data, but also by the degree to which the
observed data support the hypothesis that C and E are generally causally linked,
formally captured by the probability that structure S1 is underlying the data (an
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elaborate overview is given by Meder & Mayrhofer, 2017). The idea incorporated
by the framework is that an observed instantiation e of the effect factor provides
evidence for the presence of C only if C can be assumed to be a cause of E. A
model that incorporates only parameter uncertainty, by contrast, makes the default
assumption that C can generally cause E.

Even though the Structure Induction Framework has originally been developed to
account for general structure and parameter uncertainty in diagnostic judgments, it
can also be used to incorporate general causal uncertainty into predictions of singular
causation judgments. The motivation to incorporate general causal structure and
parameter uncertainty into estimations of singular causation is the assumption that
the degree to which a reasoner believes that c caused e on a singular occasion should
be constrained by the degree to which she believes that C generally possesses the
causal capacity to produce E. In the following sections I describe how singular
causation judgments modeled by P (c→ e|c, e) can be derived within the Structure
Induction Framework.

5.3 The Structure Induction Model of Singular Cau-

sation Judgments

To incorporate general causal structure and parameter uncertainty into an estima-
tion of P (c→ e|c, e), the Structure Induction Model carries out different computa-
tional steps. I will here focus on the core ideas behind these computational steps.
The detailed analytic derivations can be found in Meder et al. (2014) or in Griffiths
and Tenenbaum (2005).

5.3.1 Estimating the general causal structures’ probabilities

One step of the model is to compute the probability with which the observed con-
tingency data were generated by structure S1 as opposed to structure S0. The
probability of S1 being the general causal structure underlying the data can be un-
derstood as the degree to which a reasoner believes that C can generally cause E.
To estimate this probability, the model applies Bayes rule:

P (Si|D) =
P (Si) · P (D|Si)

P (D)
with P (D) =

∑
i∈{0,1}

P (D|Si) · P (Si). (5.1)

P (Si|D) denotes the posterior probability of general causal structure Si. P (Si)

denotes a structure’s prior probability that is updated in light of the observed con-
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tingency data D. To express initial uncertainty about the underlying causal struc-
ture, the model assigns an uninformative prior probability of 0.5 to each structure.
P (D|Si) is the likelihood of the observed data under a particular structure. It
thus indicates how much evidence the data provide for a particular structure. For-
mally, it is given by the integral over the likelihood function of the respective causal
structure’s parameters (see below and cf. Meder et al., 2014). P (D) represents the
probability of the data under any of the two potential causal structures and serves
as a normalizing constant.

Conceptually, given a fixed sample size of observations, the higher the observed
contingency between the target cause factor C and the target effect factor E, the
higher the probability of S1 becomes, while the probability of S0 as an explanation
of the data is proportionally weakened. According to the likelihood function in
Equation 5.1, the probability of observing a high statistical dependency between C
and E is more likely if a causal arrow exists between C and E than if a causal arrow
is missing. Hence, in Table 5.1, Data Set 3 provides better evidence for S1 than
Data Set 2 and Data Set 2 provides better evidence for S1 than Data Set 1. In fact,
for the weak contingency indicated by Data Set 1 in Table 5.1, the model estimates
a posterior probability P (S1|D) of Structure S1 of only around 0.5, indicating that
the small positive effect observed in the data was not big enough to noticeably
change the prior belief in S1. For Data Set 2, by contrast, the posterior probability
of S1 is already 0.85 and for Data Set 3 it is almost 1.0. An illustration is shown
in Figure 5.2. Interestingly, if the low contingency in Data Set 1 had been even
lower, the model would have favored S0 over S1. S1 would have been inferentially
“punished” by the model for assuming an additional parameter (wC) that S0 is not
assuming. This principle incorporated by the Structure Induction Framework is
called Bayesian Ockham’s razor (see MacKay, 2003).

A second factor influencing the posterior probability of a causal structure is the
sample size of observations. Given a fixed positive empirical contingency between C
and E, the relative probability of S1 increases with the number of observations that
have been made. For example, in Data Sets 2 and 4 in Table 5.1 the contingency is
0.50 but the sample of Data Set 4 is six times higher than the sample of Data Set
2, yielding a posterior probability for S1 of almost 1.0.

5.3.2 Estimating each potential structure’s set of parameters

A further computational step of the model is the estimation of each of a structure’s
causal parameters. Importantly, unlike the standard Causal Power Theory (Cheng,
1997), the Structure Induction Model does not derive point estimations but com-
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Figure 5.2: The two core inferential steps of the Structure Induction Model: Based
on the observed contingency data D, the model estimates the posterior probability
of S1 and S0 (left) as well as their parameters θ. The right part shows the posterior
probability distribution over wC of S1.

putes probability distributions over the structures’ parameters. The distributions
of the parameters’ are estimated separately for each causal structure. As the model
considers the default case in which alternative causes A are unobserved, the dis-
tribution of parameter bA cannot be estimated independently of the distribution of
causal power parameter wA, which is why the parameters bA and wA are subsumed
by the model under a single distribution wA. Hence, under S1, distributions over
bC , wC , and wA are estimated. Under S0, by contrast, only the distributions over
bC and wA are estimated, whereas the value of wC is set to zero. To estimate the
distribution over each of a structure’s parameter, the model relies on Bayes rule:

P (θ|D,Si) =
P (θ) · P (D|θ, Si)

P (D|Si)
. (5.2)

P (θ|D,Si) denotes the posterior probability density distribution over each of the
structure’s parameters. P (θ) is the prior probability density distribution over the
parameters. To incorporate initial uncertainty about the parameter values, the
model uses uninformative flat (Beta[1,1]) distributions over the different parame-
ters. P (D|θ, Si) denotes the likelihood of the data given a set of parameters and
a particular causal structure. The likelihood function that delivers P (D|θ, S1) is
based on an assumed noisy-OR parametrization of S1 (Pearl 1988, see also Meder
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et al. 2014) and is given by

P (D|θ;S1) = [(1− bC)(1− wA)]n(¬c,¬e) · [(1− bC)wA]n(¬c,e)·
[bC(1− wC)(1− wA)]n(c,¬e) · [bC(wC + wA − wCwA)]n(c,e).

(5.3)

As wC is set to zero under S0, the likelihood function yielding P (D|θ, S0) simplifies
and is given by

P (D|θ;S0) = [(1− bC)(1− wA)]n(¬c,¬e) · [(1− bC)wA]n(¬c,e)·
[bC(1− wA)]n(c,¬e) · [bCwA]n(c,e).

(5.4)

For an illustration, let us consider how the power parameter wC of C under S1 is
updated in light of the data. Conceptually, the degree to which the probability mass
of wC shifts towards a specific value in light of the observed data correlates positively
with the observed statistical dependency (see Figure 5.2). For example, Figure 5.2
shows that from Data Set 1 to Data Set 3, the probability mass of wC gradually
shifts to the right, as the observed contingency increases from 0.25 in Data Set 1 to
0.50 in Data Set 2 to 0.75 in Data Set 3. Data Set 3 provides better evidence that
the causal power of C is greater than zero because the mild peak in the posterior
density distribution of wC is farther away from a value of zero than the mild peak in
in the distribution of wC obtained under Data Sets 1 and 2. However, it can also be
seen that all three distributions are still relatively flat, which indicate a relatively
high uncertainty about the exact value of wC . The reason why all three distributions
are rather flat is that the sample of observations was quite small. Generally, the
posterior distribution of a parameter becomes increasingly centered the larger the
sample of observations becomes. For example, Figure 5.2 shows that the distribution
of wC is much denser around 0.50 under Data Set 4 than it is under Data Set 2. This
behavior of the model formally captures the intuition that an estimation is generally
more reliable if the data on which it is based are many than if they are few.

5.3.3 Estimating the probability of singular causation under

each parametrized structure

Once the model has estimated the posterior probabilities of the respective structures
and their parameters, it computes the probability with which an observed singular
co-occurrence of c and e was causal, P (c → e|c, e), given each of the two potential
general causal structures. This is done by integrating over the parameters’ values
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weighted by their posterior probability, which yields P (c → e|c, e; θ, Si). Impor-
tantly, as C is assumed to generally lack the causal capacity to generate the effect
under S0, P (c→ e|c, e) is held fixed at 0 under S0. To estimate P (c→ e|c, e; θ, S1)

the generalized Equation (Eq. 4.1) yielding P (c → e|c, e) that was introduced in
the previous chapter is applied. The estimate for P (c → e|c, e) obtained under S1

incorporates uncertainty about the general structures’ parameters. If Equation 3.2
was applied in this step, the resulting estimation for P (c → e|c, e) under S1 would
correspond to the predictions for singular causation of the refined model proposed
by Holyoak et al. (2010).

5.3.4 Obtaining a single estimate for singular causation

The previous step yields two estimations of P (c → e|c, e), one for each potential
structure, with a fixed value of zero for S0. However, the goal is to obtain a sin-
gle final estimate that incorporates both parameter uncertainty and general causal
structure uncertainty. This is achieved in a last computational step in which the
model “integrates out” the two potential causal structures to deliver a “Bayesian
average” of the target probability:

P (c→ e|c, e;D) =
∑

i∈{0,1}

P (c→ e|c, e;D,Si) · P (Si|D). (5.5)

Conceptually, the final output represents a weighted average of the probability of
P (c → e|c, e), where the weighting factor corresponds to the general causal struc-
tures’ posterior probabilities. As P (c → e|c, e;D,S0) is assigned a value of zero,
P (c → e|c, e;D) essentially represents the product of P (c → e|c, e;D,S1) and S1’s
posterior probability P (S1|D). The product of P (c → e|c, e;D,S1) and P (S1|D)

instantiates the assumption that the degree of belief in a singular causal connection
between C and E cannot be higher than the degree of belief that C can be a cause
of E.

For illustration let us consider the predictions that the Structure Induction
Model yields for the two different contingency data sets that were introduced in
the beginning of this chapter. For the first data set, the model yields a value for
P (c → e|c, e;D) of about only 0.35. That is, it predicts a value that is far lower
than the point estimation of 1 that the original model makes. In fact, the Struc-
ture Induction Model concludes here that it is more likely that an observed singular
co-occurrence of c and e was coincidental than causal. To see why this is, consider
again the last computational step given by Equation 5.5, which essentially delivers
the product of P (c → e|c, e) under S1 and S1’s posterior probability. The value of
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P (c → e|c, e) under S1, P (c → e|c, e;D;S1), computed by the model lies around
0.7 for Data Set 1. The reason why already this value is below the point estima-
tion of 1 delivered by the original model is that uncertainty about the S1’s causal
parameters is incorporated into this estimation (Equation 5.2). Importantly, the
value for P (c → e|c, e) obtained under S1 corresponds to the final prediction that
the model proposed by Holyoak et al. (2010) would make, as this model considers
only parameter uncertainty. Under the Structure Induction Model, by contrast, the
value for P (c→ e|c, e) obtained under S1 gets reduced further by the multiplication
with the posterior probability of S1 (see Equation 5.5). We have seen earlier that
the posterior probability for S1 is only about fifty percent under Data Set 1. That
is, the obtained value of P (c→ e|c, e;D,Si) gets reduced further by almost one half,
yielding the final prediction of about 0.35. Now let us consider what happens for
Data Set 2. Under Data Set 2, it is almost certain that S1 is the underlying causal
structure, as P [S1|D] ≈ 1. Consequently, the estimation of P (c→ e|c, e;D,S1) gets
almost not lowered by S1’s posterior probability. The model’s final prediction thus
ends up being closer to the point estimation delivered by Equation 4.1. Generally,
the more inferential uncertainty concerning the general structure and the param-
eters decreases the more the model’s predictions approximate the point estimates
delivered by the original equations.

5.4 Summary

This chapter focused on the problem that the singular causation predictions made
by the standard Power Model of Causal Attribution (and those made by the gen-
eralized model introduced in the previous chapter) rely only on point estimations
obtained directly from the data. The predictions therefore fail to take inferential
uncertainty into account. As a result, the model tends to overestimate the proba-
bility with which an observed potential cause c actually caused an observed effect e.
The data sets introduced in the beginning of this chapter served as an illustration
of this problem. We have then seen that inferential uncertainty might concern two
things: the size of the causal parameters that enter into the equations and the gen-
eral causal structure that is assumed to underlie the observed data. It was argued
that singular causation judgments should be sensitive to both. Based on previous
work by Meder et al. (2014), I proposed a Structure Induction Model of Singular
Causation Judgments that incorporates general causal structure and parameter un-
certainty into the equations of the Power Framework of Causal Attribution. The
core assumption that this extended model captures is that the degree to which a
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reasoner can believe that c caused e on a singular occasion is constrained by her
degree of belief that C can generally cause E. In the next chapter, I will summarize
a set of experiments (Stephan & Waldmann, 2018, see Appendix A) that aimed at
demonstrating the validity of the extended model.



Chapter 6

Summary of the Empirical Findings

“It was an experiment, I suppose.”

- Sam Gayton, The Snow Merchant

In this chapter I, will summarize the results of the experiments that were reported
in the two articles on which this dissertation is based. The overall goal of these exper-
iments was to evaluate the psychological validity of the new Power Model of Causal
Attribution that I developed and presented in the last two chapters. The experi-
ments of the first article (Stephan & Waldmann, 2018) aimed at establishing rather
generally that the two problems that Cheng and Novick’s (2005) standard model
neglects, the problem of causal preemption and the problem of general structure and
parameter uncertainty, are reflected by people’s singular causation judgments. The
studies reported in this article were previously included in the proceedings chapter
by (Stephan & Waldmann, 2017, see Appendix E). The idea that structure and pa-
rameter uncertainty should be incorporated into the model was first proposed in the
proceedings chapter by Stephan and Waldmann (2016, see Appendix D). The exper-
iments reported in the first article focused on the type of context that has originally
been considered by Cheng and Novick (2005), i.e., on situations in which only static
contingency information is presented to participants. The studies of the second pa-
per (Stephan et al., submitted) went beyond and focused on the interplay between
causal power information and information about the different temporal factors that
the new model considers to be relevant for the assessment singular causation, which
were introduced in Chapter 4. Two of the experiments were previously reported in
the proceedings paper by (Stephan, Mayrhofer, & Waldmann, 2018, see Appendix
F).

In my summaries of the different studies I will focus on core experimental aspects
such as the experimental goal, the procedure, and the obtained results. Study
details, like the exact phrasing of the test questions or the results of the statistical
analyses, can be found in Appendix B and C.
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6.1 Experiments of Stephan and Waldmann (2018)

The paper by Stephan and Waldmann (2018) reports two different experiments. Ex-
periments 1a and 1b aimed at testing whether reasoners generally take the possibility
of causal preemption into account when making singular causation judgments, even
if they only receive static contingency information like the results of the fictitious
medical study that were used as an illustration in the previous chapters. We focused
on situations with purely static information because it is the type of situation that
Cheng and Novick (2005) considered when they proposed their model. Experiments
1a and 1b aimed at testing the generalized equation proposed in Chapter 4 that
incorporates the possibility of preemption. To test the new equation, we tried to
minimize any potential influence of structure and parameter uncertainty on subjects’
singular causation judgments. The demonstration of an influence of general causal
structure and parameter uncertainty on singular causation judgments was the goal
of Experiment 2.

6.1.1 Experiments 1a and 1b

The paradigm that we used in Experiments 1a and 1b was a classical causal induction
paradigm. As cover story we used the gene expression scenario previously reported
in Griffiths and Tenenbaum (2005). Subjects were asked to take the perspective
of biologists who wanted to test if a particular chemical substance can cause the
expression of a particular gene in laboratory mice. They were informed that they will
observe two random samples of mice, one sample of 24 mice that remained untreated,
serving as a control group, and one sample of 24 mice that was treated with the
chemical substance. Following Griffiths and Tenenbaum (2005), it was mentioned
in the instructions that the control is important because some mice might express
the gene for natural reasons. The results of the fictitious study were presented in
a summary format (see Figure 1 in Appendix A) similar to the illustrations used
to describe the results of the fictitious medical study in the previous chapters (e.g.,
Figure 2.1).

Three different contingency data sets were manipulated between subjects. In all
three contingency data sets, all mice in the treatment group showed the effect, i.e.,
P (e|c) = 24

24
, whereas the base rate of the effect, P (e|¬c), observed in the control

group varied from P (e|¬c) = 0
24

in the first data set to P (e|¬c) = 8
24

in the second
data set to P (e|¬c) = 12

24
in the third data set. This set of contingencies was chosen

because Cheng and Novick’s (2005) Standard Power Model of Causal Attribution
and the generalized model that takes the possibility of preemption into account
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(Equation 4.1) make different singular causation predictions in this case. For all
three data sets, the standard model yields a value of 1.0 for the probability that C
caused E in a singular case in which C and E were co-instantiated. These predictions
(see Figure 6.1 b) of the standard model are obtained because the estimated causal
power (wC) of the chemical is 1.0 in all three data sets. The generalized attribution
model, by contrast, predicts a negative influence of the observed base rate of the
effect. The reason is that unless the newly introduced α parameter takes on a value
of zero, a proportion of the sufficiency overlap between the target and the alternative
causes (of the size of α) is subtracted from the causal power of C (see Equation 4.1).
In the contingency data sets that we tested, the sufficiency overlap between target
and alternative causes corresponds to the observed base rate of the effect. We
hypothesized that subjects would make the default assumption in this scenario that
the alternative causes tend to preempt the target cause, for it appeared plausible that
natural factors that also can cause gene expression had been instantiated before the
biologists decided to conduct their study. In the new model, this assumption about
the preemptive relation between C and alternative factors A is captured by high
values of the new α parameter. We set α to 1.0 in the model, yielding predictions
that decrease from P (c → e|c, e) = 1 for the first condition to P (c → e|c, e) =

0.75 for the second condition to P (c → e|c, e) = 0.5 for the third condition (see
Figure 6.1 b). As the goal of Experiment 1 was to demonstrate the influence of
assumptions about causal preemption on singular causation judgments and not the
potential influence of sampling uncertainty, we used a sample size of observations
that was sufficiently large to infer with high confidence in all three conditions that
the chemical substance is generally causally effective. An analysis of the three data
sets with the Structure Induction Model revealed that with a sample of N = 48

mice, the posterior probability P (S1|D) of Structure S1 was close to 1 for all data
sets, even for the third data set in which the observed contingency was only 0.5 (see
Figure 6.1 a).

In Experiment 1a, subjects were asked two causal test queries after they had
inspected the presented contingency data. Subjects were first presented with a gen-
eral causation query asking how strongly they believed that the chemical substance
can cause the expression of the gene. This question was included as a control ques-
tion, to rule out that uncertainty about the general causal structure can account for
predicted differences in the singular causation ratings. Based on the computed pos-
terior probabilities of S1, we assumed that subjects in all conditions would indicate
equally high degrees of belief in a general causal connection between C and E.

The second test query was the singular causation query. This test question
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Figure 6.1: Predictions and results (means and 95% CI) of Experiment 1a (Stephan
& Waldmann, 2018). Part a) shows general causation judgments for the three condi-
tions together with the respective posterior probabilities of general causal structure
S1 as computed by the Structure Induction Model. Part b) shows singular causa-
tion judgments and the predictions made by the standard and the generalized Power
Model of Causal Attribution.

referred to a randomly selected single mouse (called Mouse #25 ) from the treatment
group (c) that was showing the effect (e). Subjects were asked to indicate how
strongly they believed that it was the chemical substance that caused the expression
of the gene in this particular mouse. Answers to this question were predicted to
follow P (c → e|c, e), computed by the generalized model (Equation 4.1) with α set
to 1.0. We thus expected to see decreasing singular causation ratings across the
three conditions (see Figure 6.1).

The results (based on N = 83 subjects who were recruited from an online panel)
are summarized in Figure 6.1. As for the control question about general causation,
we found that subjects in all conditions were overall highly confident that the chem-
ical generally possesses the capacity to bring about the effect (see Figure 6.1 a). The
ratings for the general causation question did not differ significantly from each other
across conditions. Subjects’ singular causation ratings, by contrast, decreased from
the first over the second to the third data set, as predicted by the generalized Power
Model of Causal Attribution with α set to 1. Also, the ratings were close to the
absolute values predicted by the model.



59 6. SUMMARY OF THE EMPIRICAL FINDINGS

The goal of Experiment 1b was to obtain further evidence that the observed
pattern of singular causation ratings was actually driven by subjects’ assumptions
about causal preemption. Like in Experiment 1a, subjects first answered the general
causation question and then were presented with a single mouse from the treatment
group that showed the effect. Yet, other than in Experiment 1a, subjects were
not asked to say how strongly they believed that the chemical caused the effect
in this mouse, but to indicate how likely they think it was that this mouse had
already been expressing the gene before the chemical substance could have become
effective. The question directly targeted the assumed probability of preemption of
the chemical by background factors. Our prediction was that, if subjects assumed
that the background causes tended to preempt the target cause, their ratings for
this probability question should be close to the observed base rate of the effect (as
our model predicts that preemption can only become an issue on occasions on which
target and background causes are simultaneously sufficient). The results (based on
N = 74 subjects recruited form an online panel) revealed that this was the case.
Subjects’ ratings were close to the observed base rate of the effect. As for the general
causation query, we replicated the results of Experiment 1a. In all three conditions,
subjects were highly confident that the chemical be generally causally effective.

Experiment 1 provided first evidence for the validity of the generalized model.
When reasoners assess whether a potential observed cause c has generated an ob-
served effect e on a singular occasion, they take into consideration that c might have
been preempted in its efficacy by an alternative cause, even if they know that C is
generally a very strong cause factor.

6.1.2 Experiment 2

The primary goal of Experiment 2 was to investigate whether we would find an in-
fluence of general causal structure and parameter uncertainty on reasoners’ singular
causation judgments, as predicted by the Structure Induction Model that was intro-
duced in the last chapter. We also wanted to compare the new model’s predictions
to those made by different potential alternatives. To this end, we tested a larger set
of contingency data in which different levels of P (e|c) and P (e|¬c) were combined.
The contingency data set1 we tested was the one previously used by Buehner et
al. (2003) to test Cheng’s (1997) Causal Power Theory, and later by Griffiths and
Tenenbaum (2005) to validate their Causal Support Model. The different contin-

1The original set contained fifteen different contingencies but we left out the one in which the
effect never occurs in C’s presence, as a singular causation query targeting P (c → e|c, e) cannot
be asked if the effect is absent.
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gencies are shown on the x-axis of the different graphs in Figure 6.2. It can be seen
that the sample in each data set consisted of 16 observations and that P (e|c) and
P (e|¬c) were combined in a way that results in different levels of contingency (∆P ).
In the first four data sets, the contingency is zero, followed by a contingency of 0.25
in Data Sets 5 to 8. In Data Sets 9 to 11 the contingency is 0.5. The contingency in
Data Sets 12 and 13 is 0.75 and the contingency of the last data set is 1.0. General
causal structure and parameter uncertainty was expected to decrease from the first
to the last data set. The posterior probability of S1 for each data set is shown in
Figure 6.2 a). The singular causation predictions of our Structure Induction Model
are depicted in Figure 6.2 c). Like in Experiment 1, we set the α parameter to 1.
The right part of Figure 6.2 shows the singular causation predictions of different
alternative models that we considered. The predictions of the Cheng and Novick’s
(2005) standard model (Equation 3.2) are shown in Graph (e). Graph (f) shows
the predictions of the Bayesian version of Cheng and Novick’s standard equation
that was proposed by Holyoak et al. (2010), which incorporates only parameter un-
certainty. Graph (g) shows the predictions of our Structure Induction Model with
α set to zero in the generalized equation. As the generalized equation reduces to
the standard model in this case, Graph (g) shows the predictions that Cheng and
Novick’s model would make if it incorporated structure and parameter uncertainty.
Graph (h) shows the point estimates of P (c→ e|c, e) obtained from the generalized
attribution equation that was introduced in Chapter 4.

We used the same cover story and the same presentation format of the contin-
gency information as in Experiment 1. We also again assessed both general and
singular causation judgments. Other than in Experiment 1, however, the type of
causal query (general vs. singular causation) was varied between-subjects, whereas
the fourteen contingency data sets were varied within-subject. The cover story was
therefore slightly modified. It additionally informed subjects that they will be pre-
sented the results of fourteen independent studies in which the effect of fourteen
different chemicals on fourteen different genes were tested in fourteen different sam-
ples of mice.

The different contingencies were presented in random order and subjects could in-
spect each data set as long as they wanted. Subjects in the “general causation query”
condition were asked to indicate how strongly they believed that the chemical they
had just observed can cause the expression of the gene. They then proceeded to the
next data set in which a different substance and a different gene were investigated.
Subjects in the “singular causation query” condition were asked about a randomly
chosen mouse from the treatment group (c) that showed the effect (e). The singu-
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Figure 6.2: Predictions and results (means and 95% CI) of Experiment 2 (Stephan
& Waldmann, 2018). Graph (a) shows the posterior probability of general causal
structure S1 and Graph (b) shows subjects’ general causation ratings. Graph (c)
shows the singular causation predictions made by the SI-Model using the generalized
attribution equation with α set 1.0. Graph (d) shows subjects’ singular causation
ratings. The four graphs on the right show singular causation predictions made by
different alternative models. Graph (e) shows the predictions by Cheng and Novick’s
(2005) standard model. Graph (f) shows the predictions made by the Bayesian
variant of the model proposed by Holyoak et al. (2010) that incorporates parameter
uncertainty. The predictions shown in Graph (g) use Cheng and Novick’s standard
equation but incorporate structure and parameter uncertainty. Graph (h) shows
point estimations of the generalized attribution equation introduced in Chapter 4.

lar case to which the test question referred was randomly determined prior to the
experiment and was kept constant for all subjects. Like in Experiment 1, subjects
indicated how strongly they believed that the expression of the gene in the target
mouse was caused by the respective chemcial substance.

The mean ratings (based on N = 82 subjects recruited from an online panel)
for the general and singular causation judgments are depicted in Graphs (b) and
(d), respectively, in Figure 6.2. We found that subjects’ general causation ratings
(Graph b) were overall predicted well by the posterior probability of S1 computed
by the Structure Induction Model (Graph a). The results indicated that subjects’
certainty as to whether the cause can generally produce the effect varied across
the different data sets. This finding was important because we could otherwise not
have argued that uncertainty about the general causal relationship has an impact
on singular causation judgments. As predicted, we found that general and singular
causation judgments were related but not equal. Generally, subjects tended to give
higher singular causation judgments the more confident they were that the cause
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can generally lead to the effect, but they also seemed to consider the possibility of
causal preemption.

Most importantly, we found that the singular causation judgments (Graph d)
were predicted well by our Structure Induction Model that computes P (c→ e|c, e)
with our generalized attribution equation and α set to 1 (Graph c). It can be
seen in Figure 6.2 that our model predicts an overall smooth increase in the singular
causation judgments from the first to the last data set. The mean singular causation
ratings followed this pattern, even though they were on average slightly higher than
the predictions. Figure 6.2 shows that all other models that we considered predicted
a qualitatively different pattern of singular causation judgments. Different model
fit measures (see Table 1 in Appendix A) that we computed confirmed that our
model captured the results best. It yielded the overall highest correlation between
predictions and mean ratings (r = 0.94) and it accounted for more variance in the
observed ratings than all the other models (R2 = 0.88). However, even though our
model was superior on these global fit measures, the other models yielded quite high
values here, too. The reason is that all models are sensitive to the contingency in the
data. It was therefore important to also evaluate the models’ performances for the
subsets of the contingency set in which ∆P was kept constant. A particular strength
of our model was that it also quite accurately accounted for these local trends,
whereas all other models performed rather badly here. For example, the Bayesian
variant of Cheng and Novick’s attribution model (Graph f) that was proposed by
Holyoak et al. (2010) predicted a negative trend for the first part of the contingency
set where ∆P = 0. The results, however, indicated a positive trend. Moreover, this
model predicted local u-shaped trends that were clearly not observed. The Structure
Induction version Cheng and Novick’s model (Graph g) that neglects the possibility
of causal preemption predicted negative trends for ∆P = 0 and for ∆P = 0.25. A
particular problem of the standard attribution model and the generalized model,
which both solely rely on point estimates (Graphs f and h), was that they could not
handle the different situations in which ∆P = 0. The reason is that their equations
are undefined in this case. Furthermore, these two models predicted local trends
that were qualitatively very different from the observed results. Overall, the results
of Experiment 2 in Stephan and Waldmann (2018) indicated that subjects’ singular
causation judgments incorporated the possibility of causal preemption and that they
were influenced by uncertainty about the existence of a general causal relationship
between the target cause factor and the effect.
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6.1.3 Summary

The goal of the studies in Stephan and Waldmann (2018) was to provide a first
test of our new model and to demonstrate the principal relevance of both causal
preemption and uncertainty about the general causal link between target cause and
target effect for singular causation judgments. We tested our new model in the
context of classical causal inductions tasks in which only statistical information
was presented and temporal information was not provided. The studies focused
on this type of context because it is the one that was originally targeted by the
alternative models (Cheng & Novick, 2005; Holyoak et al., 2010). Also, we wanted to
show that reasoners take the possibility of preemption into account even if temporal
information, which together with causal power knowledge is supposed to be the
type of information that determines intuitions about preemption, is not explicitly
provided. The results of the experiments indicated that this was the case.

6.2 Experiments of Stephan, Mayrhofer, and Wald-

mann (submitted)

The studies of Stephan et al. (submitted) followed up on the experiments reported
in Stephan and Waldmann (2018). Stephan and Waldmann (2018) demonstrated
the principal relevance of causal preemption for singular causation judgments, but
they did not experimentally manipulate temporal information. The goal of the
studies reported in Stephan et al. (submitted) therefore was to test the different
temporal factors introduced in Chapter 4 that determine α. Furthermore, as it was
suggested in Chapter 4 that the probability of causal preemption of the target cause
by alternative causes is given by the product of wC , bA, wA, and α (Equation 4.1),
another goal was to test the interplay of temporal and causal power information on
singular causation judgments. Importantly, as the experiments aimed at evaluating
specific predictions made by the generalized attribution equation (Equation 4.1), we
tried to rule out any influence of general causal uncertainty. To rule out uncertainty
about the general causal structure, a cover story was used in which it was explicitly
mentioned that the effect can be brought about by each of two different causes2.
To minimize uncertainty about the size of the causal power parameters, the two
potential causes were presented in two separate learning phases in which a relatively
large number of observations was shown. Stephan et al. (submitted) conducted four

2Focusing on exactly one observed alternative cause A of the effect requires to set the base rate
parameter bA to 1, computing P (c→ e|c, a, e) instead of P (c→ e|c, e). The general computational
principle of the model does not change, however
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Figure 6.3: Illustration of the learning task used in Experiment 1 in Stephan et al.
(submitted).

experiments in which different predictions made by the new generalized model were
tested.

6.2.1 Overview of cover story, procedure, and materials

All four experiments used the same cover story and similar procedures. The cover
story described a medieval kingdom, “Extonia”, that was threatened from time to
time by hordes of vicious barbarians who tried to invade and plunder the empire. It
was mentioned that the king, to protect his kingdom, had two watchtowers (tower
“North” and tower “South”) built at the realm’s border. The tower crews were
instructed to alarm Extonia’s knights by sending a carrier pigeon to the palace
as soon as approaching barbarians were spotted. It was described that pigeons
automatically set off an alarm the moment they arrived at the palace. The two
watchtowers represented the two cause factors (C and A) and the alarm occurring
in the palace represented the target effect factor (E).

In all experiments, subjects were asked to take the perspective of the king’s
minister of defense who wants to inspect the efficacy of the empire’s defense system.
Across the different experiments, different parameters were described to be relevant.
In Experiment 1, for example, it was mentioned that the minister wants to inspect
two different factors: the flight durations of each tower’s pigeons and the alertness
of each tower, that is, how quickly each tower tends to spot approaching barbarians
and sends off a pigeon. The first factor represented the causes’ causal latencies
and the latter factor was supposed to capture differences in the onset times of the
two causes. Subjects in all experiments were informed that they will make several
observations of each tower in separate learning phases and that their task will be
to learn about the different parameters. Before subjects proceeded to the learning



65 6. SUMMARY OF THE EMPIRICAL FINDINGS

phase, it was mentioned that the final test question will be a causal query that refers
to a singular occasion on which the palace was alarmed. We also presented several
instruction-check questions that subjects had to answer correctly before they could
proceed.

In all experiments, subjects learned the relevant parameters in dynamic anima-
tions. An illustration of the animations that were presented in the two learning tasks
of Experiment 1 is shown in Figure 6.3. The left picture shows an illustration of the
causal-latency learning task and the right picture shows an illustration of the onset-
difference learning task. In the causal-latency learning task, the moment a tower
sent a carrier pigeon was indicated by an orange circle occurring around tower. The
arrival of the pigeon at the palace was signaled by a circle occurring around the
palace. Subjects observed the two towers separately in the latency-learning task.
They read that only the crew of one tower was allowed to send pigeons at a time,
while the other tower was instructed to remain inactive. Subjects’ task was to learn
whether one tower had faster pigeons that the other. Subjects made repeated ob-
servations for each tower (the number of observations differed across experiments).
In the onset-difference learning task both towers sent their pigeons on the same trial
(as soon as they spotted the barbarians) and subjects’ task was to learn whether
there were systematic onset differences between the towers. Subjects made repeated
observations here, too. As we wanted subjects to focus on the towers’ onsets in
this learning task and not on the causal latencies, the palace was masked by a grey
rectangle. Several factors were counterbalanced in our experiments, including the
order of the learning tasks, whether subjects first observed tower “North” or “South”,
which tower had the faster pigeons, which tower tended to spot barbarians earlier,
what the target tower was to which the test question referred, and the orientation
of the rating scale. A detailed description of all factors that were counterbalanced
can be found in the methods sections of the original manuscript in AppendixC. Af-
ter subjects had learned the respective parameters, they were presented the target
scenario. The target situation described a singular occasion on which both towers
sent a pigeon and on which an alarm occurred in the palace. Subjects read that
the people of Extonia wanted to decorate the tower crew who caused the alarm on
this occasion, but that there was the problem that both towers had sent pigeons.
Subjects were asked to indicate how strongly they believed the alarm was caused
by tower “North” [“South”] on this occasion. Whether the question referred to tower
“North” or “South” was counterbalanced between subjects. We did not use a bipolar
rating scale with the two towers on opposite sides of the scale because this would
have created a disadvantage of Cheng and Novick’s standard model, according to
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which both potential cause factors should be considered as singular causes if they
were simultaneously sufficiently powerful.

6.2.2 Experiment 1

Experiment 1 tested different scenarios in which the temporal factors were manip-
ulated that determine the α parameter of our generalized model. As was shown
in Chapter 4, these factors are the cause factors’ causal latency and the difference
in the causes’ onset time. We have seen in Chapter 4 that the estimation of α re-
quires the integration of both factors and that causal latency and onset difference
are compensatory. We wanted to test whether reasoners indeed integrate the two
factors as predicted by the model. As Experiment 1 was intended to serve as a first
test, we used fixed values for the causal latencies instead of gamma distributions.
In the causal-latency learning phase, subjects observed ten latencies per tower (20
observations in total). In the onset-difference learning phase, subjects made ten
observations. The different parameter values for causal latency and onset difference
can be found in Table 1 in AppendixC.

Four different scenarios were tested, which differed with respect to the combi-
nation of causal latency and onset difference (see Table 1 in AppendixB). In the
first scenario, the two causes had identical causal latencies but differed with respect
to their onset times. That is, subjects learned that one tower always spotted the
barbarians earlier than the other tower. We have seen in Chapter 4 that in this case
our model predicts that subjects should favor the cause factor that has the onset
advantage on its side. The second scenario tested the complementary case in which
the two towers had identical onset times but one tower had faster pigeons than the
other. We here expected to see higher ratings when subjects were asked about the
tower that had the faster pigeons. Scenarios 3 and 4 were the critical conditions,
as we here pitted onset-time difference and causal latency against each other. This
was done in two different ways that allowed us to test whether subjects actually
integrated both temporal components or whether they considered one component
to be more important than the other. Generally, our model predicts that subjects
should give higher singular causation ratings for the cause that minimizes the sum
of causal latency and onset time (see Equation 4.2). In Scenario 3, one cause factor
was instantiated repeatedly after 1600 ms and had a causal latency of 800 ms, while
the other cause always occurred after 800 ms and had a causal latency of 2400 ms.
Thus, the first cause minimized the sum of onset time and causal latency (2400 ms
vs. 3200 ms) and thus was expected to receive higher singular causation ratings.
However, higher singular causation ratings for this cause could have been due to



67 6. SUMMARY OF THE EMPIRICAL FINDINGS

an unconditional preference for shorter causal latencies. Scenario 4 controlled for
this confound by testing the opposite case. Here it was the cause with the onset
advantage but the causal-latency disadvantage that minimized sum of onset time
and latency.

The causal powers of the two causes were not manipulated in this first experiment
because we wanted to focus on the temporal components identified by our model.
Both causes had a causal power of 1. That is, subjects observed that each tower
always succeeded in setting off an alarm in the palace. Cheng and Novick’s standard
model hence predicted very high and identical ratings across all four scenarios, while
our model predicted the differences that were described above.

The results (based on N = 384 subjects recruited from an online panel) of Exper-
iment 1 were in line with the predictions of our model, indicating that subjects not
only incorporated information about onset-difference and causal latency but that
they indeed integrated the two types of information in a compensatory manner. A
graphical summary of the results can be found in Figure 8 in AppendixC. In the
first scenario, subjects gave higher ratings when they were asked about the cause
that always occurred first than when asked about the cause that always occurred
second, following the principle that a cause that occurs earlier is less likely to be
preempted by a competitor if everything else can be assumed to be constant. In
Scenario 2, in which the onset-difference was kept constant, subjects gave higher
singular causation ratings when asked about the cause with the smaller causal la-
tency, following the principle that, everything else being equal, faster causes are less
likely to be preempted. Importantly, the ratings in both Scenario 3 and Scenario
4 were higher for the cause factor that minimized the sum of causal latency and
onset time, no matter whether the advantageous factor was causal latency or onset
time. Moreover, we found that the differences in the ratings for the two potential
causes were almost identical in Scenarios 3 and 4, which additionally corroborated
that subjects considered both factors to be equally important. However, we also
found that the differences between the causes were smaller than in Scenarios 1 and
2. The fact that the observed differences were overall smaller in Scenarios 3 and 4
than in Scenarios 1 and 2, where the causes differed on only one temporal dimension,
can be explained by the higher difficulty of the computation in the more complex
cases. The more complex conditions were also more memory demanding. Subjects
here had to retrieve from memory information about the degree to which the causes
differed on both dimensions, while it sufficed in the first two scenarios to remember
the ordinal ranking of the causes on a single discriminating dimension. Overall, the
results of Experiment 1 suggested that subjects indeed estimated the probability of
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Figure 6.4: Pairs of gamma distributions contrasted in the five conditions of Exp. 2
in Stephan et al. (submitted). The shape (κ) and scale (θ) parameters of the five
different gamma distributions are listed for each pair. The depicted α values were
obtained using the MC algorithm corresponding to Eq. 4.2. The dark distributions
show the causal latencies of the target cause and the light distributions show the
causal latencies of the alternative cause.

causal preemption as is predicted by our Equation 4.2.

6.2.3 Experiment 2

The goal of Experiment 2 was to test the more natural case of variable causal la-
tencies. We compared different conditions in which the two potential causes were
paired with causal latencies that followed different gamma distributions. On the
assumption that variation in causal latencies is the default situation, we expected
subjects to be sensitive to this factor and hypothesized that their singular causa-
tion judgments are in line with the predictions of our generalized model. However,
another possibility that we considered was that subjects might only estimate the ex-
pected values of the causal latencies, while variability in causal latency is neglected.
The way in which we manipulated causal latencies in Experiment 2 allowed us to
test both possibilities. As we wanted to focus on causal latency information in this
study, we again restricted the scenarios to deterministic causes. Furthermore, as we
wanted to keep the onset-difference constant, we informed our subjects that both
causes occurred simultaneously in the target situation.

The pairs of gamma distributions that were contrasted in five different between-
subjects conditions are shown in Figure 6.4. As can be seen, the “distances” between
the distributions (G1 - G5; higher numbers indicate higher expected values) in
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the different conditions varied quantitatively, from fairly extreme in Condition 1,
for example, to identical in Condition 3. The latency distribution belonging to
the target cause C in each condition is depicted in dark blue. In Condition 1,
for example, which contrasted distributions G1 and G5, the target cause’s latency
followed G1, whereas the latency of the alternative cause followed G5. Conditions
4 and 5 involved the same pairs of distributions as Conditions 1 and 2, but the
distribution associated with the target cause was changed. Figure 6.4 also shows the
different α values estimated with the sampling algorithm introduced in Chapter 4.
For the first pair, for example, α equals 0.01. In the case of deterministic causes
(wC = wA = 1), α directly corresponds to the probability that c was preempted
by a. Thus, we expected participants to be confident in this condition that it was
indeed the target cause c that brought about the observed outcome. In the fifth
condition, by contrast, in which C follows G5 and A follows G1, participants were
expected to be confident that c did not cause the effect. Figure 6.4 also shows
that all the other conditions were expected to elicit more uncertainty concerning
the preemptive relation. In the third condition, for example, in which C and A

had the same latency distribution (G3), which means that α = 0.50, we expected
participants to be uncertain about whether tower “North” or tower “South” caused
the effect. In the case of deterministic causes, the predictions for P (c → e|c, a, e)
are given by 1−α. Our model thus predicted a negative linear trend of the ratings,
with the highest ratings in Condition 1 and the lowest ratings in Condition 5. The
version of our model that computes α based on only the expected values of the
latency distributions predicted maximal ratings for Conditions 1 to 3 (Condition 3
is represented as a situation of symmetric overdetermination in this case) and zero
ratings for Conditions 4 and 5. The standard model predicted maximal ratings in
all conditions. The predictions of the different models are shown in Figure 6.5.

Other than in Experiment 1, the learning phase consisted of only the causal-
latency task (see Figure 6.3 A). Subjects were shown thirteen observations per tower,
which corresponded to thirteen quantiles of the respective latency distribution. We
used quantiles instead of randomly sampled latencies because we wanted to keep
the overall sample of observations relatively small but representative for the respec-
tive latency distribution. The thirteen causal latencies per tower were presented
in random order. The target situation to which the singular causation test query
referred was similar to the one in Experiment 1, with the exception that subjects
were informed that it was known that both towers sent their pigeons simultaneously
(i.e., ∆t = 0 and could be neglected).

The results (based on N = 200 subjects recruited from an online panel) were in
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Figure 6.5: Model predictions and results of Experiment 2 in Stephan et al. (submit-
ted) (bars show mean singular causation ratings; error bars denote 95% bootstrapped
CIs; red points show jittered individual ratings; black points show medians) for the
different conditions (see Fig. 6.4). The predictions of the Standard power PC model
of causal attribution were obtained from Equation 3.2. The predictions of the gen-
eralized model were based on Equation 4.1 and different ways of estimating alpha.
The first of these plots shows the predictions obtained when α is calculated based on
the expected values of the respective gamma distributions. The second plot shows
the predictions obtained when α is estimated based on the gamma distributions.

line with the predictions made by our generalized model that uses the full causal-
latency distribution to compute α. The results were at odds with both Cheng and
Novick’s (2005) standard model and the version of our model that relies on only the
expected values of the causal latencies (see Figure 6.5). Subjects’ singular causation
judgments were not only sensitive to causal latency but also took the variability of
causal latency into account.

6.2.4 Experiment 3

In Experiments 1 and 2 deterministic causes were tested because we aimed to isolate
the influence that the introduced temporal factors exert on singular causation judg-
ments. However, according to our generalized model (Equation 4.1), causal power
information should also play a crucial role in singular causation judgments. A cen-
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tral new prediction of our model is that causal power and temporal information are
expected to interact, as the probability of preemption is given by the product of
wC , wA, and α. The goal of Experiment 3 was to explore this core property of our
generalized model.

A scenario was tested in which both causes either had a causal power of wC =

wA = 0.83 or of wC = wA = 0.5. Causal latency was manipulated by using the first
pair of gamma distributions (G1 vs. G5) shown in Figure 6.4. The causal latency of
the target cause was either associated with G1 or G5, while the causal latency of the
alternative cause always followed the complementary distribution of the pair. This
combination of causal powers and relative causal latencies of the potential causes
led to a predicted interaction effect that is shown in the middle panel of Figure 6.6.
The x-axis shows the relative causal latency of the target cause, that is, whether
it followed distribution G1 or G5. As can be seen, when the target cause’s relative
causal latency is high (i.e., its causal latency follows G5 while the causal latency
of the alternative cause follows G1), our generalized model predicts that ratings
should be higher when the causal power of the target cause is low than when it
is high (black vs. grey bars in Fig. 6.6). Conceptually, this condition represents a
scenario in which a reliably working target cause is competing with an alternative
cause that not only is also working reliably but that also tends to operate quicker
than the target cause. This should make it very unlikely that the target cause was
the singular cause of the effect on an occasion on which both factors were present.
Mathematically, the product that is subtracted from wC in the high-power condition
(black bar in the left pair) is sufficiently large so that the numerator ends up smaller
(0.83− 0.83 · 0.83 · 0.99 = 0.15) than in the low-power condition (grey bar in the left
pair; 0.5 − 0.5 · 0.5 · 0.99 = 0.25). Furthermore, the denominator is smaller in the
low-power condition than in the high-power condition (0.5+0.5−0.5 ·0.5 = 0.75 vs.
0.83 + 0.83− 0.83 · 0.83 = 0.97), which means that the numerator in the low-power
condition is increased more strongly than in the high-power condition. Figure 6.6
also shows that the new model predicts the reversed effect when the relative causal
latency of the target cause is low (i.e., when it follows G1; see right pair of bars in the
middle panel of Fig. 6.6). Here, the product that is subtracted in the numerator from
the target cause’s causal power becomes small because the target cause is operating
quicker than its competitor. The causal-latency advantage that the target cause
has allows it to manifest its high causal power. In this condition, our model makes
the same predictions as the standard power PC model of causal attribution: we
expected subjects to give higher singular causation ratings in the high causal power
condition than in the low causal power condition. Finally, Figure 6.6 shows that
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Figure 6.6: Model predictions and results of Exp. 3 in Stephan et al. (submitted)
(bars represent mean singular causation ratings; error bars denote 95% bootstrapped
CIs; red points show jittered individual ratings; black points show medians). The
x-axis shows the relative causal latency of the target cause.

the new model also predicts a main effect of causal latency: causes that on average
tend to precede the efficacy of their competitors (right pair of bars) should receive
higher singular causation ratings than causes whose competitors tend to preempt
them (left pair of bars). Finally, a main effect of causal power was predicted by the
standard but not by our generalized model.

Causal power and causal latency were manipulated between subjects in this
experiment. The materials and procedure were largely identical to those of Exper-
iments 1 and 2, with the exception that information about the probabilistic causal
nature of the towers was added to the instructions. Participants read that pigeons
might get lost on their way to the palace and that it would therefore be important
to study the pigeons’ arrival rates. Secondly, the learning task was modified accord-
ingly, so that causal power and causal latency information were conveyed together in
a single learning phase. Other than in Experiment 2, subjects observed 24 pigeons
per tower. The number of observations was increased to ensure that all participants
observe a sufficient number of “successful” pigeons to be able to learn the towers’
causal latencies. Subjects in the high-power condition observed 20 successful pi-
geons per tower, whereas subjects in the low-power condition observed 12 successful
pigeons per tower. The flight durations corresponded to 12 or 20 quantiles of the re-
spective causal latency distributions. Whenever a pigeon failed to reach the palace
during the learning task, the words “pigeon probably lost” were displayed after a
duration that corresponded to the 99.9th percentile of the “slower” causal-latency
distribution (G5). The description of the target situation and the singular causa-
tion test question was identical with the one in Experiment 2. Additionally, on a
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separate screen, subjects were asked to estimate the causal powers of the two causes.
We assessed causal power ratings because we wanted to control for the possibility
that subjects’ representations of the causal powers of the two causes might have
been influenced by the causes’ causal latencies. Our generalized model considers
causal power and causal latency to be two independent properties of causes: While
causal power solely reflects causal strength (cf. Cheng, 1997), causal latency solely
reflects the time it takes a cause to generate its effect. Yet, we wanted to control for
the possibility that subjects might not have kept causal power and latency informa-
tion apart, and instead represented a relatively slow cause as less powerful than a
relatively fast cause. This would be problematic for our generalized model because
the predicted main effect of causal latency could then be explained by perceived
differences in the causal powers alone.

The results (based on N = 160 subjects recruited from an online panel) of the ex-
periment were in line with the predictions of our generalized model (see Figure 6.6).
First of all, we found the predicted main effect for causal latency. Subjects tended
to give higher ratings when the target cause had a smaller causal latency than its
competitor. This finding replicated the previous results from Experiments 1 and 2
that indicated that reasoners’ singular causation judgments are sensitive to causal
latency information. Secondly, the main effect of causal power that was predicted
for the tested combination of parameters by the standard model but not by our gen-
eralized model was not found. Most importantly, the singular causation judgments
showed the interaction effect between causal power and temporal information that
was predicted by our generalized model. This finding suggested that subjects indeed
integrated temporal information about causal latency (captured by α) and informa-
tion about the causal powers of the potential causes (wC and wA) as predicted by
our generalized model. However, what can also be seen in Figure 6.6 is that the
interaction effect was smaller than predicted.

Finally, the ratings for the causal-power control questions (see Figure 13 in Ap-
pendix B) did not indicate an influence of causal latency on causal-power representa-
tions. Subjects in the different causal-latency conditions gave causal-power ratings
that were close to the normative values (of 0.50 and 0.83). The observed main effect
of causal latency was thus not due to distorted representations of the cause factors
causal powers.

6.2.5 Experiment 4

Although the pattern of singular causation judgments in Experiment 3 was cap-
tured well by the new model, the predicted interaction effect was relatively weak.
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As the predicted interaction effect follows from a core principal of our generalized
model, we decided to replicate the results in a fourth experiment that investigated
a set of causal power parameters that should lead to a larger interaction effect.
The same causal latency distributions were used (distributions G1 and G5), but
this time causes were contrasted that either had a power of wC = wA = 0.93 or
wC = wA = 0.40. The model predictions are depicted in Figure 6.7. Another dif-
ference from Experiment 3 was the control question that we asked in the end. The
control question that we asked at the end of Experiment 3 only controlled for the
possibility that subjects’ causal power representations were distorted by causal la-
tency information. However, an influence in the other direction is also possible,
that is, differences in the causal powers might have an impact on causal latency
representations. We assumed that this is not unlikely in the paradigm that we used
in our studies. The trials in which a cause failed to generate the effect ended after
a duration that corresponded to the 99.9th percentile of the slower causal latency
distribution. Consequently, subjects in the low-causal power condition spent more
time on the task than subjects in the high-causal power condition. At the end of
Experiment 4, we therefore asked a control question that assessed how strongly sub-
jects’ causal latency representations are affected by the causal power information.
Subjects were asked to imagine a situation in which both towers sent their pigeons
simultaneously, and then had to indicate on a rating scale which pigeon they be-
lieved to be quicker (i.e., which tower had the smaller causal latency). Answers to
this question also allowed us to calculate the α value of our model based on subjects’
representations.

The results of Experiment 4 (based on N = 384 subjects recruited from an online
panel) successfully replicated those of Experiment 3 (see Figure 6.7). We obtained
again a significant main effect for causal latency and, crucially, also a significant
interaction between causal power and causal latency. Moreover, the bigger differ-
ences in the causal power parameters that we used (0.93 vs. 0.40 in Experiment 4
compared to 0.83 vs. 0.50 in Experiment 3) did indeed lead to a larger interaction
effect. However, it can be seen in Figure 6.7 that the differences were still smaller
than predicted by our model.

The ratings for the causal latency control question were overall high in both
causal-power conditions, confirming that subjects correctly identified the cause that
had the smaller causal latency (an illustration is shown in Figure 15 in Appendix C).
Yet, we also found that the causal power difference led indeed to a small distortion
of subjects causal-latency representations. When the causal power of the two causes
was high, subjects were more likely to give a rating associated with the cause with
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Figure 6.7: Model predictions and results of Experiment 4 in Stephan et al. (sub-
mitted) (bars represent mean singular causation ratings; error bars denote 95%
bootstrapped CIs; red points show jittered individual ratings; black points show
medians). The x-axis shows the relative causal latency of the target cause.

the lower causal latency than when the causal power of the causes was low.
We used subjects’ causal latency ratings to estimate the α parameter in our

model, to see how this would change the predictions for the singular causation
ratings. The model predictions based on subjects’ causal latency ratings are depicted
in the third panel in Figure 6.7. It can be seen that this model did indeed predict a
smaller interaction effect than the model that used the objective parameter values.
The results of this experiment demonstrated again the validity of the new model.

6.2.6 Summary

While the studies of Stephan and Waldmann (2018) did not manipulate the temporal
factors that according to our generalized model are crucial for judgments of singu-
lar causation, the studies of Stephan et al. (submitted) tested central predictions
concerning the interplay of causal power and temporal information. Experiment 1
demonstrated that reasoners are sensitive to both onset difference and causal la-
tency, and that they actually seem to integrate the two temporal dimensions in a
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compensatory manner, as predicted by our model (see Equation 4.2). Experiment
2 demonstrated that reasoners’ singular causation judgments are sensitive to vari-
ability in the potential causes’ causal latencies. Finally, Experiments 3 and 4 tested
the crucial prediction of the new model that causal power and temporal information
should interact. These last two experiments are particularly important, because
we here varied all parameters that are part of the new generalized power model of
causal attribution. The results supported the model.



Chapter 7

General Discussion

This thesis asked how causal queries about singular cases can be answered, that
is, how it can be assessed what the cause of an observed effect e was. Cheng and
Novick’s (2005) Power Model of Causal Attribution, which belongs to the class of
normative computational models and relies on Cheng’s (1997) famous Causal Power
Theory, was the focus of this thesis. According to the Power Model of Causal
Attribution, the relevant information for the assessment of singular causation is the
relative strength or causal power of the potential causes of the observed effect1. The
core computational principal behind the model, as I have shown, is to determine
the probability with which a target cause factor C was sufficiently powerful on an
occasion to produce the effect. This dissertation pursued the goal of demonstrating
that more needs to be considered to answer singular causation queries. First of all,
I showed that a successful model also needs to take temporal information (Chapter
4) into account. The reason is that it can otherwise not handle the problem of
causal preemption. Also, in Chapter 5 I argued that uncertainty about the general
causal structure and the causal parameters needs to be considered. I have proposed
a new model that generalizes the standard equations so that they can handle the
problem of preemption. I have then proposed a Bayesian extension of the model
that incorporates general-causal uncertainty. The experiments that were conducted
demonstrated the validity of the new model and confirmed several of its predictions.
However, some of the model’s aspects and predictions have remained yet untested.
In the following, I first want to turn to and discuss these empirical limitations. I then
will finish with an elaboration on more general theoretical issues that I consider to be
important and that I think provide interesting avenues for future research projects.

1We have seen that in situations in which it is not known whether the potential causes of the
effect were actually present, their base rates are also regarded as relevant.
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7.1 Empirical limitations

A crucial prediction of the Structure Induction Model of Singular Causation Judg-
ments that was presented in Chapter 5 is that reasoners should be sensitive to the
sample size of observations, as a general principle that is formally captured by any
Bayesian updating model is that the confidence in a particular hypothesis should
increase the more data one has observed. A shortcoming of the study of Stephan and
Waldmann (2018) is that no experiments were conducted that directly tested this
prediction. The sample size varied between Experiment 1 and 2 but a direct test
was not conducted. A comparison of the singular causation ratings for the same
contingencies across the two experiments reported in the study seems to suggest
that subjects were at best mildly sensitive to sample size. Yet, the two experiments
varied with respect to the experimental design and are thus not fully comparable.
It would thus be interesting to manipulate this factor in a future experiment.

Another limitation of the study by Stephan and Waldmann (2018) was that only
one type of cover story was used in Experiment 2, where the influence of general-
causal uncertainty on singular causation judgments was investigated. The Structure
Induction Model of Singular Causation Judgments, following previous research by
Griffiths and Tenenbaum (2005) and Meder et al. (2014), regards maximal prior
uncertainty as the default, which is modeled with uninformative priors over the
causal structure and the parameters. In the chemical-gene scenario that was tested,
maximal uncertainty about the general causal structure and the parameters seemed
to be a plausible assumption, but in other contexts this might well be different. In
fact, Lu et al. (2008) have argued that reasoners’ causal inferences would often be
in line with a Bayesian learning model that assigns a strong and sparse prior to the
causal strength parameters (see Griffiths, 2017, for an overview). Lu et al. (2008)
have not investigated singular causation judgments, however, and it would thus be
interesting to test our model under different types of scenarios.

One noteworthy characteristic of the experiments in Stephan et al. (submitted),
which manipulated the temporal factors that are incorporated by the Generalized
Power Model of Causal Attribution, was that subjects observed all potential causes
of the effect. In most real-world situations, however, reasoners observe only a subset
of the potential causes and thus typically have to deal with the problem that the
alternative causes are unobservable. The experiments in this study have not consid-
ered situations with unobserved background causes because this would have required
a substantial modification of the paradigm. However, I have outlined in Chapter
4 that the Generalized Power Model of Causal Attribution can handle this type of
situation. It was suggested there that the temporal distribution of the base rate of
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the effect can be modeled with exponential distributions. The observed causal-delay
distribution in the presence of the target cause would then be a mixture of the par-
ticular gamma distribution of the target cause’s causal latency and the exponential
background distribution, but the same algorithm for the calculation of α could be
used to derive the predictions. It would be interesting to test such situation in fu-
ture experiments and to examine whether the model accurately captures people’s
judgments here, too.

A common feature of the experiments in Stephan and Waldmann (2018) and
Stephan et al. (submitted) is that only static target situations were tested. In
all experiments, subjects were asked to make singular causation judgments based
on previously acquired knowledge about causal strength, causal delays and onsets
differences. The structure of the target situation that was tested thus resembled a
classical crime scenario in which the detective enters the scenery and tries to identify
the perpetrator after all events had unfolded. The reason why the studies focused
on this type of test situation was that it is the standard situation analyzed by the
Standard Power Model of Causal Attribution and because it is the type of situation
that was tested in previous related studies (e.g., Holyoak et al., 2010). In many
real-life situations, however, singular causation queries arise in dynamic contexts. A
crucial feature of dynamic test cases is that the onsets of the relevant events and the
delays between them are experienced. What the presented model thus far neglects
is that experiencing the singular delay between potential causes and effect should
introduce a dependency between the causal power and temporal parameters of the
model, as information about the delay between the onset of a target cause and the
onset of the effect should be informative about the causes’ actual causal strengths in
the situation. Imagine a target cause with an average causal strength of wC = 0.90

and an expected causal delay of 20 minutes. Think of a person who takes a dose
of Aspirin and who experiences relief from her pain only after two hours. In this
situation, the unexpectedly long delay seems to provide evidence that the causal
strength of the drug was zero on the given occasion, and it therefore should weaken
the belief that it was the singular cause of the effect. It would be interesting to
model and test such situations in future studies.

Another prediction made by the Power Model of Causal Attribution that was not
tested in the reported experiments is that reasoners’ singular causation judgments
should be sensitive to the base rate of the potential causes in situations in which only
the effect is observed. It was shown in Chapter 3 that singular causation judgments
are supposed to follow P (c→ e|e) in this type of situation and that the numerator
of the corresponding equation consists of the product of the base rate of the target
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cause C, denoted bC , and its causal power, wC . This type of situation can be easily
investigated in future experiments by augmenting the developed learning paradigm
with a separate base-rate learning phase.

7.2 General theoretical considerations and outlook

7.2.1 The role of knowledge about causal mechanisms

An important question that this thesis did not address concerns the role of causal
mechanism information in the assessment of singular causation. Causal mechanism
information has, however, been identified as an important type of information in
causal reasoning (an overview is given by Johnson & Ahn, 2017). It has been shown,
for example, to play an important role in how reasoners form causal explanations
(e.g., Lombrozo, 2010; Lombrozo & Vasilyeva, 2017; Nagel & Stephan, 2015, 2016) or
make predictive judgments (e.g., Bes, Sloman, Lucas, & Raufaste, 2012; ?). Causal
mechanism approaches to causality are also one of the central philosophical frame-
works of causality (e.g., Glennan, 2017; Machamer, Darden, & Craver, 2000). What
is of particular relevance for the project of this thesis is that different studies have
shown that reasoners regard mechanism information as particularly relevant when
making causal attributions (Ahn, Kalish, Medin, & Gelman, 1995; Johnson & Keil,
2018). Moreover, in a recent article about normative strategies for the assessment
of singular causes, the philosopher Nancy Cartwright (2017) has listed mechanistic
information among the factors that help assess singular causation. It is therefore
important to say something about how mechanism information interrelates to the
model that I have developed and defended in this thesis.

I think that the influence of mechanism information on singular causation judg-
ments can be captured by the proposed Generalized Power Model of Causal Attribu-
tion by the addition of variables. Generally, causal mechanisms can be represented
in causal graphical models by additional variables that are interpolated between the
cause and the effect factors (an illustrative overview of how to formally capture and
utilize causal mechanism information in causal reasoning can be found in Chapter 9
in Pearl & Mackenzie, 2018), thereby turning a previously direct causal connection
(e.g., C → E ← A) into an indirect one (C → MC → E ← MA ← A). For an
illustration of how mechanism information can be incorporated by the model and to
illustrate why mechanism information is valuable when it comes to the assessment
of singular causation, let us consider the type of situation again in which a reasoner
knows that C, A, and E occurred on a singular occasion and she is asked to express
how confident she is that c instead of a caused e on this occasion. Knowledge about
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the status of the mechanism variable MA connecting A and E would be helpful here
because knowing the status of MA constrains a’s actual causal power on the target
occasion. If the causal chain A → MA → E honors the causal Markov condition
– which states that a variable in a causal network that is conditioned on its direct
cause is independent from all other variables except for its own descendants – and if
there is only one “mechanism path” leading from A to E (on whichMA lies), the ab-
sence of MA (¬mA) on a singular occasion (¬mA) implies that a had a causal power
of zero in this case and can therefore be ruled out as a singular cause of e. Conse-
quently, whenever c is the only remaining potential cause of the effect, one can safely
conclude that e was caused by c. I have mentioned in Chapter 3 that an important
strategy for the assessment of singular causation is the elimination of alternative
causes (“Holmesian inference”), and we have there considered an example in which
an alternative cause A was found to be absent on the target occasion. Finding that
a mechanism variable of an alternative cause A was not instantiated on the target
occasion is another means of eliminating A from the list of the potential causes.
The Power Model of Causal Attribution can be easily augmented to incorporate
this mechanism-checking strategy. Consider how Equation 4.1 proposed in Chap-
ter 4 would have to be modified to capture such a situation. What would change
is that another conditional element would have to be added to P (c → e|c, a, e),
turning this expression into P (c → e|c, a,¬mA, e). On the right-hand side of the
equation, the unconditional causal power of A, wA, would have to be substituted
by A’s power conditional on the absence of MA, wA|¬mA

. Assuming that the causal
Markov condition holds and that there is only a single mechanism path connecting
A and E, wA|¬mA

would amount to zero and P (c→ e|c, a,¬mA, e) would reduce to
wC

wC
= 1. Of course, even in cases in which A produces E via multiple mechanism

paths, assessing the status of MA can be helpful. If a situation can be conditional-
ized on the absence of MA, this should generally increase P (c → e|c, a,¬mA, e), as
the causal Markov condition implies that wA|¬mA

< wA.
Importantly, causal mechanism information might not only constrain the causal

strength parameters in the model but also the parameter α. The reason for this
is that a causal mechanism connecting a target cause and a target effect might
consist of multiple causal paths which might differ not only with respect to their
causal powers but also with respect to their causal latencies. Take the example of
a coroner who wants to find out whether a victim displaying an abdominal gunshot
wound actually died because of the gunshot. The causal strength with which bullets
kill their victims is surely quite high on average, but also fairly variable. Similarly,
bullets typically bring death to their victims relatively quickly, but not always.
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Depending on the organs that are damaged, both the probability of dying from a
gunshot and the latency can be high or low. A case in which the bullet took a straight
path to the victim’s heart will probably lead to higher confidence in a singular causal
link between gunshot and death than a case in which the bullet left all organs intact.
Bullets that stop their victims’ hearts are not only more effective, they also bring
death so quickly that there is less room for alternative causes to strike (e.g., an
assassin might first have administered a lethal dose of poison but then decided to
shoot the victim). Manipulating and testing the influence of causal mechanism
information on singular causation judgments will be an interesting avenue for future
studies.

7.2.2 Assessing singular causation vs. selecting singular causes

The new Power Model of Causal Attribution proposed and evaluated in this thesis
addresses the problem of how it can be determined whether an observed singular
co-occurrence of events was actually causal (c→ e) instead of coincidental (c, e). A
different problem discussed in the literature (e.g., Hitchcock & Knobe, 2009; Icard,
Kominsky, & Knobe, 2017; Kominsky, Phillips, Gerstenberg, Lagnado, & Knobe,
2015; Phillips, Luguri, & Knobe, 2015) under the name singular or actual causation
refers to the interesting phenomenon that even though several factors typically need
to come together to generate an effect, people have the strong tendency to regard
only a subset, or even only one, of these factors as the cause(s) of the observed
outcome (see also Cheng & Novick, 1991; Novick & Cheng, 2004). For an illustration
of this phenomenon, let us consider the frequently discussed forest fire example (e.g.,
Halpern & Hitchcock, 2015), in which it is stated that a forest fire occurred after
a lit match had been dropped negligently. In this example, most people are more
inclined to regard the negligently dropped lit match as the cause of the fire than
the presence of oxygen in the surrounding atmosphere or than dry material on the
ground. Although we would probably not deny causal relevance of these latter
factors, they are regarded as mere conditions that enable the lit match to cause the
effect.

Importantly, selecting the lit match over oxygen and dry material presupposes
that the lit match had already been identified as a causally relevant factor on the
singular occasion that is considered. This model proposed in this dissertation tar-
geted the question of how the causal relevance of a potential cause on a singular
occasion can be assessed and not what the factors are that determine whether a
causally relevant event is selected over others. Just imagine that there also had
been a lightning strike on the day the forest fire occurred. This opens up the pos-



83 7. GENERAL DISCUSSION

Figure 7.1: Illustration showing the difference between the concepts of singular
causation and causal selection. The different cause factors sharing a colored area
constitute a (probabilistically) sufficient condition for the effect. All cause factors
within an area, by contrast, are conjunctively connected.

sibility that the lit match was completely irrelevant, and one could thus say that it
only coincidentally co-occurred with the effect.

The difference between the two types of problems is illustrated in Figure 7.1,
where the potential cause factors of a common effect factor are grouped together
in different colored areas. Each area represents a non-redundant conglomeration of
factors that are only jointly sufficient for the effect, though still only probabilistically
sufficient unless the set comprises an exhaustive list of factors (cf. Mackie’s,1974,
idea of INUS conditions). Importantly, all factors subsumed under a common area
are conjunctively connected (formally expressed: they are connected by a logical
“AND”; e.g., match and dry material and oxygen), whereas any two factors belonging
to different areas represent potential alternative causes of the effect (logical “OR”;
e.g., lit match [and oxygen and dry material] or lightning strike [and oxygen]).
Singular causal selection refers to the highlighting of one of the factors within a
probabilistically sufficient condition, whereas what I would like to call assessing
singular causation, and which is targeted by the model evaluated in this thesis,
refers to the process by which the effect is attributed to one of different alternative
factors.

Establishing the causal relevance of a factor on a singular occasion epistemically
comes before the causal selection process, but this does not imply that the selection
of a factor over others is generally less important. The selection of a factor will,
for example, often be of enormous pragmatic relevance. In the forest fire case, a
reasonable goal would be to prevent a similar incident in the future. For this purpose
it appears extremely relevant to highlight the negligently dropped lit match, whereas
the presence of oxygen is of no pragmatic value in this respect.
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The goal of identifying good “target points of intervention” has indeed been
described in the literature as a relevant factor behind the selection process (see,
e.g., Hitchcock & Knobe, 2009). Another prominent idea in the literature is that
the selection of singular causes be driven by considerations about their “normality”
(Hitchcock & Knobe, 2009; Icard et al., 2017; Kahneman & Miller, 1986; Komin-
sky et al., 2015; Phillips et al., 2015). The idea is that those singular causes are
preferably selected whose occurrence is more abnormal than that of others in the
target situation. Interestingly, events that fulfill the abnormality criterion will often
also be those that fulfill target of intervention criterion. “Abnormality”, under these
accounts, can refer to both statistical normality or prescriptive norms (for a critical
view on the role of prescriptive norms in causal selection see Samland & Waldmann,
2016).

An interesting future project might be to develop an integrative account that can
handle both types of problems. An obvious approach would be to construct and test
a model that runs through a two-step process. In a first step, the causally relevant
factors are separated from those that were causally irrelevant in a given situation.
Here, the model would consider the factors that were identified as relevant by the
Generalized Power Model of Causal Attribution proposed in this thesis, that is, it
would consider causal power and temporal information. In a second step, the model
would take into consideration those factors that were identified as important for the
selection process.

7.2.3 Singular events and their corresponding types

The Power Framework of Causal Attribution commits to the philosophical point
of view that singular causal connections between occurred events are not directly
observable, and that the assessment of singular causation therefore needs to involve
general-level causal knowledge about the potential cause’s causal powers and tem-
poral factors, which have to be gained from multiple observations. This, however,
leads to the problem that a suitable type-level causal variable or reference class has
to be chosen over which the relevant parameters can be computed.

In the present thesis it has not been tested how reasoners select reference classes
to estimate the relevant causal parameters, but this is an interesting question for
future studies. Take, for ex-ample, the question whether Peter’s smoking has caused
his lung cancer. Peter might not only be categorized as a singular instantiation of
the type “smoker” but also as a singular instantiation of the type “smoker consuming
more than 10 but less than 50 cigarettes per day” or “smoker consuming more than
10 but less than 50 cigarettes per day and having cardiovascular problems”. The
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fact that singular cases can be subsumed under more or less abstract types raises
the question which reference class people will tend to associate with a singular
case when generating a singular causal judgment. An important problem here is
that causal strength estimates in most cases will vary depending on the chosen
reference class (Cartwright, 1989). A plausible hypothesis worth investigating is that
people will prefer to associate singular cases with a reference class that is maximally
homogeneous. This hypothesis is a plausible first pass but surely it needs empirical
qualification. For example, narrowing the reference class too much (i.e., being too
specific) so that the target case is its only member, would render the reference class
useless. Another problem is that there is always a theoretically infinite number of
reference classes if no further constraints on the features determining the class are
introduced. We might additionally consider that Peter is a smoker who is around 40
years old, which seems like relevant information regarding his disease status, but we
might also take into consideration that he has dark hair and large feet, which seems
irrelevant. Thus, a more plausible hypothesis is that people choose the narrowest
possible reference class that contains more than one individual and is described
by features that are conceived as homogeneous with respect to all factors that are
generally causally relevant for the target effect (see Cartwright, 1989; Waldmann &
Hagmayer, 2001, for an elaboration on this problem).

7.2.4 Assessing the relevant parameters cross-sectionally vs.

longitutinally

Another interesting question that follows from the considerations above and which
should be addressed in future studies is whether reasoners prefer to assess the rele-
vant causal parameters from cross-sectional (different entities observed at one point
in time) or longitudinal observations (the same entity observed over time). Thus far,
the Power Model of Causal Attribution is blind for whether the parameters (e.g.,
the causal power of target and alternative cause) are derived longitudinally or cross-
sectionally, but a plausible hypothesis is that reasoners are sensitive to the way the
parameters were obtained when they want to make singular causation judgments.
As an example, imagine a person who one morning recognizes a slight muscle tremor
in her hand after she had consumed a particular amount of coffee for breakfast, and
that she now wondered whether it was the coffee that was responsible for the ob-
served muscle tremor. In this situation, it seems plausible that she, to obtain an
answer to her singular causation query, would not rely only on knowledge about
the causal strength (and causal latency) between caffeine intake and muscle tremors
that she has gained from past observations of other people, but that she would also
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consider, and maybe even prefer, the contingency between caffeine consumption and
muscle tremor that she gleaned from past observations of her own body behavior.
A preference for assessing the causal parameters longitudinally will often be norma-
tive because moderator variables that introduce variability are more likely to remain
constant in a longitudinal design.

7.3 Conclusion

Causal queries about singular cases arise frequently in our mundane lives and they
are important in many professional disciplines such as the law, medicine, or engineer-
ing. Yet, the question of how it can be determined whether two events were actually
causally connected turns out to be difficult to answer. The new Power Model of
Causal Attribution that I proposed in this thesis combines information about causal
power with temporal information about causal latency and onset differences, and
incorporates uncertainty about the general causal relationship, in order to assess the
probability with which an observed effect e was caused by a target cause c. The
experiments showed that the new model better accounts for peoples’ singular cau-
sation judgments than Cheng and Novick’s (2005) original model, and thus provide
evidence that the new model identifies important factors that had been missing. Yet,
the theoretical considerations raised above also make clear that, to obtain a compre-
hensive account of singular causation judgments, different and important questions
remain to be answered in the future.
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Appendix A

Summaries of the Additional Articles

The two articles that belong to the main project of this dissertation are included in
Appendix B and Appendix C. I will here provide brief summaries of the additional
papers which I wrote (or co-authored) during my PhD. The three proceedings arti-
cles in Appendices D, E, and F are direct precursors of the two main articles, and
thus substantially overlap with the main articles. In Stephan and Waldmann (2016)
(Appendix D), we proposed to embed Cheng and Novick’s (2005) Power Model of
Causal Attribution into the Structure Induction Framework (Meder et al., 2014),
in order to account for the problem of inferential uncertainty about the general
causal structure and the parameters. The generalized attribution equation that was
presented in Chapter 4 was for the first time proposed in Stephan and Waldmann
(2017) (Appendix E). The formalization of the α parameter and the relevant tem-
poral factors for its assessment were introduced in Stephan et al. (2018) (Appendix
F).

A.1 Summary of Stephan, Tentori, Pighin, andWald-

mann (in prep)

In a project (see Appendix G) in which Michael Waldmann and I collaborated with
Katya Tentori and Stefania Pighin from the University of Trento, we investigated
people’s causal belief updating in the context of causal interpolations. Causal in-
terpolation describes the epistemic process in which a reasoner learns about the
mechanism variables (M) linking two factors that have already been known to be
causally related (thereby turning the representation of a direct relation, C → E, into
the representation of an indirect one, C → M → E). We were interested in how
causal interpolation changes people’s predictive inferences. We found that causal
interpolation leads to a systematic weakening in predictive probability judgments,
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P (e|c). In our paradigm, subjects first learned about the statistical relationship be-
tween a mutation of a fictitious gene, JPH3, and a fictitious disease, Lipogastrosis,
and then were asked to estimate how likely it is that a randomly selected individual
who carries the mutation also suffers from the disease. Thereafter, subjects were
informed about the causal structure that generated the observed data. Subjects
either learned that there was a direct relationship (C → E) or that the mutation
leads to the disease via a particular mechanism (C → M → E). Subjects then
were again asked to estimate the predictive probability of disease given mutation.
We found across all five experiments that subjects considered the effect to be less
predictable once they had learned about the causal mechanism linking C and E.
This weakening effect appears paradoxical, because it seems to imply that the more
we learn about a causal relationship, the less we can say. The theoretical expla-
nation for this weakening effect that we explored was that people might confuse
interpolation scenarios with lengthening scenarios (or other types of causal network
augmentations) in which causal variables are added on the effect side of a causal
chain. In lengthening scenarios, where a reasoner first represents A → B and then
learns A → B → C, the predictive probability P (C|A) should indeed be weaker
than P (B|A) (unless the links are deterministic).

A.2 Summary of Nagel and Stephan (2015, 2016)

Together with Jonas Nagel I worked on a project (Appendix H and I) in which we
investigated the role of mechanism information in causal explanations. In particu-
lar, we were interested to find out under which conditions an intermediate variable
M connecting a root cause C with an effect E in a causal chain (C → M → E)
is considered to be an “adequate mechanism” that explains how C generates E and
under which conditions the intermediate variable M seems to take on the role of
an alternative explanation of E that screens C off from E. Formally, the question
was what the factors are that determine whether a causal relationship is perceived
as being transitive or intransitive. Our general hypothesis was that whether an in-
termediate variable is regarded as an “adequate” mechanism or as an “alternative
explanation” depends on the overall “sensitivity” of the relationship. The sensitivity
of a causal relationship describes the degree to which it is robust toward pertur-
bations of boundary conditions. Explanatory causes, according to this hypothesis,
are those causes that not only bring about their effects in the narrow context of ac-
tually observed circumstances, but continue to do so in contexts in which different
boundary conditions hold. One reason for why a causal relationship can be highly
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sensitive (leading to intransitivity) is that the mechanism works reliably only under
quite specific conditions, but is easily disturbed in other, similar situations. For
example, in Experiment 1 in Nagel and Stephan (2015), subjects first learned about
a strong statistical relationship between pupils’ gender and their grades in a phys-
ical education class (e.g., all girls had good grades and all boys had bad grades).
Subjects indicated that the pupils’ gender was a good explanation for their grades
in that class. Subjects then either learned that the relationship was mediated by
a teacher who prefers girls over boys, or by physiological factors within the pupils
(e.g., flexibility of the joints). We found that subjects in the teacher but not in the
physiology condition revised their initial judgments concerning gender as an expla-
nation for the grades in this class. Subjects in the teacher condition considered the
pupils’ gender to be less explanatory, and instead indicated that it was the teacher’s
preference that explained the relationship. No revision, by contrast, was found in
the physiology condition. The sensitivity hypothesis explains this finding. If the
influence of gender on grades is mediated by a genetically determined physiologi-
cal mechanism, it likely will continue to hold in future observations with different
samples of pupils. The teacher mechanism, by contrast, implies that this relation-
ship depends on the presence of highly peculiar boundary conditions (a preferential
bias) which will rarely be met in other, similar situations. The results of subsequent
experiments, in which we eliminated different confounding factors (e.g., intentional
agency, moral abnormality), confirmed the sensitivity hypothesis.

A.3 Summary of Stephan, Willemsen, and Gersten-

berg (2017)

Together with Pascale Willemsen from the University of Bochum and Tobias Ger-
stenberg from the University of Stanford I have worked on a project (Appendix J) in
which we investigated causal omissions. People often cite omissions (i.e., events that
failed to occur) as causes of outcomes. Consider, for example, the situation where
someone claims that “the ball went into the goal because the defender did not block
it”. Causation by omission has been discussed heavily among philosophers because it
seems to pose a problem for transference-based accounts of causality. Transference
accounts appear to be incapable of handing causation by omission because no quan-
tity is transferred from the cause (a negative event) to the effect (a positive event).
Counterfactual accounts, by contrast, seem to be able handle these cases. According
to a counterfactual analysis, the defender’s not blocking the ball was the cause of its
going into the goal if it is true that ball would not have gone into goal if the defender
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had blocked it. However, many philosophers have pointed out that counterfactual
accounts must deal with two problems here. First of all, there is the problem of
causal selection. It also seems to be true that the ball would not have gone into the
goal if someone else (e.g., the goalie) had blocked it. Why, then, does the defender
seem to be the cause? A second problem is called the underspecification problem.
In order to counterfactually identify an omission as a cause, a negative event has to
be replaced with a positive event. The problem is that there are a infinitely many
ways in which a negative event can be replaced by positive event. How can this set
of possibilities be constrained?

In this project, we investigated how reasoners solve the underspecification prob-
lem in simple physical environments (involving marbles going or not going through
a gate). We developed and tested a counterfactual simulation model that computes
the probability with which an observed outcome (e.g., a red marble that failed to
go through a gate) would have been different if the omission (a grey marble having
failed to hit the red marble) had been replaced by a positive event (the red marble
hitting the grey marble). The set of counterfactual possibilities that the model con-
siders when it computes this probability is constrained by the physical properties of
the environment. In two experiments, we found that the model’s predictions closely
mapped subjects’ causality ratings, which suggested that subjects engaged in similar
counterfactual simulations to derive their judgments. In future studies, we plan to
test the model in more complex scenarios.
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Abstract

Causal queries about singular cases, which inquire whether actual individual events are

causally connected, are prevalent in daily life and important in professional disciplines,

such as the law, medicine, or engineering. Because causal links cannot be directly

observed, singular causation judgments require an assessment of whether a

co-occurrence of two events c and e is causal or simply coincidental. How can this

decision be made? Relying on previous work by Cheng and Novick (2005) and Stephan

and Waldmann (2018) we propose a model that combines information about the causal

strengths of the potential causal events with information about their temporal relations

to derive answers to singular causation queries. The relative causal strengths of the

potential cause factors are relevant because weak causes are more likely to fail to

generate effects than strong causes. But even a strong factor needs not necessarily be

causal in a singular case, for it could have been preempted by an alternative cause. We

here show how information about causal strength and about two different temporal

components, the potential causes’ onset times and their causal latencies, can be

formalized and integrated to account for the possibility of causal preemption and to

assess singular causation. Four experiments were conducted in which we tested the

validity of the model. The results showed that people integrate the different types of

information as predicted by the new model.

Keywords: singular causation; causal attribution; preemption; time; causal

reasoning; computational modeling
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1 Introduction

The ability to reason causally about how the world works is one of our central

cognitive capacities (see Sloman, 2005; Waldmann, 2017). Whereas previous research

has frequently investigated the question of how we learn and reason about causal events

that refer to classes of objects or people (e.g., “smoking causes lung disease”), little is

known about how we reason about causal explanations of singular events (but see

Danks, 2017; Lombrozo & Vasilyeva, 2017). For example, if a smoker is diagnosed with

lung cancer, we might wonder whether it has been her smoking that caused her lung

cancer or whether the disease was due to something else, such as exposure to asbestos.

In the context of law, we may be interested in whether a defendant actually caused the

death of his fiancée when he was drunk, which is a different query from the one of a

sociologist who is interested in the general relation between alcoholism and violent acts

(see Hart & Honoré, 1959/1985; Lagnado & Gerstenberg, 2017). All these queries are

aided by knowledge about general causal relations, but cannot be reduced to them.

Knowing that smoking probabilistically causes lung cancer does not entail that the lung

cancer of a specific smoker was actually caused by her smoking. It may very well be a

coincidence.

More abstractly, when assessing singular causation reasoners need to take into

consideration that a singular co-occurrence c and e of the general factors C and E ,

even if these are already known to be generally causally connected (C → E), could well

have been a mere coincidence. The present research asks how reasoners form beliefs

about causal links in singular cases. If potential causes (say c or/and a) and a

particular outcome (e) are known to have co-occurred, what influences the degree to

which a reasoner believes that there has been a causal connection between them?

In the present paper we present a new computational model of singular causation

judgments that extends previous work of Cheng and Novick (2005) and Stephan and

Waldmann (2018). We will show that the assessment of singular causation relations

requires the combination of two types of information: (a) information about the causal

strengths of the potential cause factors, and (b) information about temporal relations

xxv APPENDIX C. STEPHAN, MAYRHOFER, AND WALDMANN (SUBM.)
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between causes and effect. We will focus on two types of temporal information that are

important: One type is information about the onset times of the potential causes and

the other is information about causal latencies, by which we mean the time it takes

causes to bring about their effects. We will show how information about these

components can be formalized and how the generalized model of causal attribution

combines causal strength and temporal information to predict singular causation

judgments. The results of four experiments will be reported which supported the

predictions of the new model.

1.1 General causal relations

All models of singular causation that will be discussed here postulate a tight link

between general and singular causation. To answer the question whether Peter’s lung

cancer is caused by his smoking, for example, it is necessary to know that generally

smoking tends to cause lung cancer. Moreover, the stronger the causal relationship is,

the more likely it is that the singular case is causal rather than a coincidence. A

popular theory of how causal strength of a general relation can be estimated is Cheng’s

(1997) power PC theory. According to Cheng, causal power is the probability of an

effect given a target cause in the hypothetical absence of alternative observed or

unobserved causes. Since such cases cannot be directly observed, causal power needs to

be estimated based on the observed covariation between cause and effect.

For an illustration of Cheng’s (1997) method of estimating strength, consider the

upper part of Fig. 1, which shows an example contingency that might have resulted

from a medical study in which doctors investigated whether a newly developed drug (C)

can cause headaches as a side effect (E) (cf. Liljeholm & Cheng, 2007). The right panel

shows the results that were obtained in the control group (e.g., treated with a placebo),

while the left panel shows the results that were obtained in the treatment group. As

can be seen, 12 out of the 24 subjects in the control group suffered from headaches (at

the time the researchers made the assessment), yielding P (e|¬c) = 0.50. In the

treatment group, by contrast, 18 out of the 24 subjects suffered from headaches,

APPENDIX C. STEPHAN, MAYRHOFER, AND WALDMANN (SUBM.) xxvi
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Figure 1 . Relation between observable covariation data and the unobservable causal

structure assumed to underlie the data. C and E in the causal structure denote the

target cause and effect factor, respectively. A is assumed to comprise the sum of

unobserved alternative causes of E. bC and bA denote the base rates of C and A, wC

and wA the causal powers of C and A.

yielding P (e|c) = 0.75. The results show a positive probabilistic contrast of

∆P = 0.75− 0.50 = 0.25, indicating that the probability of headaches in the presence of

the newly developed medicine increases by 25 percent.

∆P measures the degree of covariation between two factors but the degree of

covariation does not always reflect the causal strength of a factor. Cheng (1997) has

shown under which circumstances the (generative or preventive) causal power (or

strength) of a target cause factor C can be estimated from observable covariation data.

A graphical representation of the unobservable causal structure that reasoners would

assume to underlie the observable contingency ∆P between a target cause C and a

target effect E is shown in the bottom part of Figure 1. The power PC theory

principally distinguishes between two generative causal influences on E: the power

exerted by the target cause C, and the power exerted by the sum of all (unobserved)

alternative causes A of E. In the simplest case, A consists of only one alternative cause.

The power PC theory assumes that C and A occur independently of each other with

certain base rates, denoted bC and bA, respectively. Furthermore, it is assumed that C
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and A exert their powers on E independently of each other (i.e., non-interactively). The

functional form of the causal structure established by these assumptions is called a

noisy-OR gate in the causal Bayes net literature (Glymour, 2003; Griffiths &

Tenenbaum, 2005; Meder, Mayrhofer, & Waldmann, 2014; Pearl, 1988, 2000). The

causal powers of C and A can be labeled wC and wA, respectively, and correspond to

the probabilistic weights of the causal arrows connecting the causes with their effect

(see Griffiths & Tenenbaum, 2005). Importantly, if the assumptions underlying power

PC theory are met, the theory provides a causal explanation of the observed ∆P .

According to the theory, ∆P is given by ∆P = wC + bA · wA − wC · bA · wA − bA · wA ,

where the first term, wC + bA · wA − wC · bA · wA, corresponds to P (e|c) and the last

term, bA · wA, corresponds to P (e|¬c). By substituting bA · wA with P (e|¬c) and by

re-arranging the equation, the causal power of a generative target cause C can be

estimated with the following equation:

wC = ∆P
1− P (e|¬c) . (1)

For an illustration, consider again the results of the fictitious study depicted in the

upper part of Fig. 1. According to causal power theory, the 12 instances of headaches

that were observed in the control group must have been caused by some unobserved

background factor(s), with probability bA · wA = 0.50. As the theory assumes that both

the base rates and the causal powers of C and A are independent of each other, the 18

instances of headaches observed in the treatment group must, by contrast, be explained

by the joint influence of C and A, whereby A’s contribution is already known to have

been bA · wA = 0.50. Hence, 12 of the 18 instances of headaches that occurred in the

treatment group can be causally explained by the influence of A. Only the remaining 12

subjects who received the treatment C could actually reveal its causal power. 8 out of

these 12 subjects suffer from headache. The causal power of the drug thus is

wC = 8
12 = 2

3 , implying that a patient not suffering from headaches who is given the

newly developed medicine can expect to develop headaches with a 66 percent

probability.
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2 Cheng and Novick’s (2005) causal power model of attribution

The last section described how causal power can be estimated for general causal

relations. Cheng and Novick (2005) have shown how general-level causal knowledge can

be applied to answer queries about singular instantiations (see also Holyoak, Lee, & Lu,

2010). Cheng and Novick derived equations for different types of queries; we will focus

here on singular causation queries in which c and e have been observed to be present.

Imagine a doctor who has diagnosed lung cancer in one of her patients knows that

the patient is a smoker. According to Cheng and Novick (2005), what needs to be

considered for estimating the probability that c (“the patient’s smoking”) actually

caused the observed effect e (“her lung cancer”) is the probability with which C tends

to cause E (i.e., its causal power) and the probability of E given C. This quantity can

formally be denoted as P (c→ e|c, e) and can be estimated with Eq. 2. This equation is

supposed to filter out the cases of e in the presence of c that are actually caused by c

using the causal power estimate wC .

P (c→ e|c, e) = wC

wC + bA · wA − wC · bA · wA

= wC

P (e|c) . (2)

Furthermore, one can also imagine a situation involving exactly two potential

causes C and A of a common effect E. Imagine it was known that both potential causes

and the effect were present (c, a, e) and that a reasoner wanted to know which of them

is more likely to be the singular cause of e. In this case, P (c→ e|c, a, e) is provided by:

P (c→ e|c, a, e) = wC

wC + wA − wC · wA

= wC

P (e|c, a) . (3)

Equations 2 and 3 describe how different situations in which causal queries about

singular cases can arise should be handled according to the power PC framework of

causal attribution. Fig. 2 illustrates the power PC theory of causal attribution

graphically. For simplicity, imagine Fig. 2 depicted a scenario in which there exists one

alternative cause factor A in addition to the target cause factor C. A is assumed to be

present in both the treatment and the control group. Now imagine a patient showing

the effect (e) who was randomly sampled from the treatment group (c, a, e). What

xxix APPENDIX C. STEPHAN, MAYRHOFER, AND WALDMANN (SUBM.)
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Figure 2 . Illustration of the power PC model of causal attribution. The blue area

represents the relative frequency of cases in which the E occurs when C and A are

present. The yellow area represents the relative frequency of cases in which C’s causal

power was probabilistically sufficient to generate E. Cases within the dashed frame

represent those in which C and A were both sufficient.

would, according to the power PC framework of causal attribution, be the probability

with which the effect e was actually caused by c, P (c→ e|c, a, e)? According to Eq. 3,

P (c→ e|c, a, e) can be estimated by normalizing wC by the probability of E given C

and A, P (e|c, a). The number of effects in the presence of C and A is highlighted in

Fig. 2 by the blue area in the treatment-group panel. As can be seen, the blue area

marks those 20 out of the 24 patients who took the medicine and showed the effect,

that is, P (e|c, a) = 20
24 = 5

6 . The causal power of C is highlighted by the yellow area in

the treatment-group panel. From Eq. 1, we already know that the causal power of C is

wC = 2
3 . C was therefore probabilistically sufficient to produce E in 16 out of the 24

patients who took the medicine. P (c→ e|c, a, e) can be understood as the ratio of the

yellow and the blue area in the treatment group panel.

2.1 The insufficiency of probabilistic sufficiency: cases of causal preemption

Stephan and Waldmann (2018) have pointed out in a recent article that the causal

power theory of causal attribution has one important deficit. The theory fails to
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capture situations of “probabilistic overdetermination” in which a sufficient potential

target cause factor was preempted in its efficacy by an alternative cause that was also

present and sufficient on the occasion. For an illustration, consider again the treatment

group shown in Fig. 2. Eq. 1 revealed that C was probabilistically sufficient in 16 out of

the 24 treatment-group subjects (highlighted by the yellow area). But we also know

from the control group that the alternative cause A tends to produce the effect with a

causal power of wA = 0.50. Under the independence assumptions of the power PC

theory we can hence assume that A was also probabilistically sufficient in fifty percent

of the cases in the treatment group, that is, in 12 of the 24 subjects. Hence there is a

“sufficiency overlap” between C and A of wA · wC = 1
2 · 2

3 = 1
3 . There are eight subjects

in the treatment group in which C and A were simultaneously sufficient. Imagine that

these eight overdetermined cases were the ones that are marked by the dashed rectangle

shown in Fig. 2. Eq. 3 attributes all these cases to C. Thus, P (c→ e|c, a, e) tends to

overestimate the relative frequency of effects singularly caused by C, as for some cases

the alternative cause a could have preempted the target cause c in generating the effect.

A standard example of preemption, often discussed in the philosophical literature

(e.g., Halpern, 2016; Halpern & Hitchcock, 2015; Lewis, 1973; Pearl, 2000) is a scenario

involving two perfectly accurate rock throwers, Billy and Suzy. It is assumed in this

example that neither Billy nor Suzy, when acting alone, ever fail to hit and destroy a

bottle. On a particular occasion, however, Billy and Suzy both end up aiming for the

same bottle and both are throwing their rocks with nearly identical speed. Suzy,

however, manages to throw her rock a bit earlier than Billy, and the bottle breaks

before Billy’s stone reaches its target. In this case it is intuitively Suzy’s but not Billy’s

throwing that caused the bottle’s breaking, no matter that Billy’s throw was also

sufficiently accurate and powerful.

Singular cases involving preemption can be illustrated schematically with neuron

diagrams as shown in Fig. 3 (see Paul & Hall, 2013), where a situation is depicted in

which the potential cause c was preempted by an alternative cause a. Such situations of

preemption are perfectly in line with the general causal structure assumed by the power
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Figure 3 . Neuron diagram modeling a situation of causal preemption (cf. Paul & Hall,

2013). The interrupted causal arrow departing from c and the arrow connecting a and e

illustrate a situation in which c was causally preempted by a.

PC framework. Yet, as the power PC model of causal attribution considers only the

relative sufficiency of the potential causes, it cannot distinguish between different

situations of preemption. Applying the preemption scenario to the fictitious medical

study, imagine that in Fig. 2 the background factor had produced all its effects before

the subjects in the treatment group received the medicine. In this case, the eight

occurrences of the effect identified by the dashed rectangle should intuitively not be

attributed to the target cause but to the alternative cause. All singular causal relations

that are compatible with the general causal structure and a singular observation in

which the two potential causes and the effect were present (c, a, e) are depicted in Fig. 4.

Based on the conceptual analysis provided above, one can see that Eq.3 correctly

attributes causality to c in structures a1, a2, and c1, that is, when the alternative cause

a does not possess sufficient power to generate the effect, when the target cause c

preempts its competitor a, and when both c and a act in a way called “symmetric

overdetermination” in the literature (cf. Hitchcock, 2001; Paul & Hall, 2013; Pearl,

2000; Strevens, 2008). However, the model erroneously attributes causality to c

whenever a situation exhibits structure b2, in which a preempts c in its efficacy. We

believe that preemption of c by preexisting background factors a is the standard case

suggested by most cover stories used in causation research (see below for examples).

Cheng and Novick (2005) have considered one additional situation that we have

not yet discussed. They developed an equation that allows it to estimate how likely it is
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Figure 4 . Illustration of the potential singular causal structures in a situation in which

c, a, and e were observed that are compatible with the general causal common-effect

structure in which C and A are independent probabilistic cause factors of the effect

factor E.

that the target cause alone caused the observed occurrence of the effect:

P (c alone−−−→ e|c, a, e) = wC − wC · wA

wC + wA − wC · wA

= wC − wC · wA

P (e|c, a) . (4)

In Eq. 4 the product of wC and wA is subtracted from wC in the numerator, which

means that the probabilistically overdetermined cases are now “attributed away” from

the target cause. This equation captures the cases described in the contexts a1 and b2

in Fig 4. Yet, it fails in contexts, such as structure a2, in which the target cause

preempts the alternative cause in its efficacy.

In sum, Eq. 3 attributes the whole sufficiency overlap to the target cause, and

therefore captures P (c→ e|c, a, e) correctly in situations in which the target cause

preempts the alternative cause. Eq. 4, by contrast, attributes the full sufficiency overlap

to the alternative cause, and hence captures correctly the probability of the target cause

being the singular cause of the effect in situations in which the alternative cause

preempts the target cause. The problem of the model is that there is an infinite number

of intermediate steps between “the target cause was certainly preempted” and “the
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target cause was certainly not preempted.” It cannot handle, for instance, a situation in

which a reasoner is uncertain as to whether the target cause was preempted by the

alternative cause. Furthermore, the model does not provide an account of the factors

influencing intuitions about preemption.

3 A generalization of causal attribution theory sensitive to preemption

To incorporate the possibility of causal preemption, Stephan and Waldmann

(2018) have proposed a generalization of the power PC framework of causal attribution.

Eq. 5 summarizes the generalized model:

P (c→ e|c, a, e) = wC − wC · wA · α
wC + wA − wC · wA

= wC · (1− wA · α)
P (e|c, a) . (5)

Eq. 5 introduces a new parameter, α, which is weighted with the product of wC

and wA. The product wC · wA · α is supposed to capture the probability of preemption

of the target cause factor by the competing alternative cause: The intersection of wC

and wA identifies the sufficiency overlap, i.e., the cases in which C and A are both

probabilistically sufficient for E. This part of the term is relevant because the problem

of preemption only occurs when the potential causes are both probabilistically

sufficient. On these occasions it can either be the case that c preempts a or that a

preempts c. Another possibility is that c and a act symmetrically on an occasion,

instantiating a situation of “symmetric overdetermination”. The newly introduced α

parameter represents an allocation parameter, 0 ≤ α ≤ 1, that determines the

proportion of the sufficiency overlap in which C is preempted by A. As wC · wA · α

captures the probability of preemption of the target cause by the alternative causes, it

needs to be subtracted from wC in the numerator.

Consider again the example of the fictitious medical study. We know that

wC · wA = 2
3 · 1

2 =
1
3, that is, that there were eight cases in which both potential causes

were probabilistically sufficient for the effect. Now imagine a reasoner believed that the

alternative cause tends to preempt the target cause with a relatively high, say 75

percent, probability on occasions on which both are probabilistically sufficient. To
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model this situation, the α parameter in Eq. 5 needs to be set to 0.75, which yields

wC · wA = 2
3 · 1

2 · 3
4 = 1

4 for the product in the numerator. Thus, six of the eight cases of

the sufficiency overlap in the example would be attributed away from the target cause,

yielding P (c→ e|c, a, e) = 1
2 . One should therefore conclude that for a randomly

sampled singular case in which the effect and the target cause co-occurred, c has caused

e with a probability of fifty percent. The two extreme types of situations in which a

reasoner is either certain that the target cause preempted the alternative cause or

certain that the target cause was preempted by the alternative cause can be modeled by

setting the α parameter to 0 or 1, respectively. In the first case, Eq. 5 is identical to

Eq.3. In the second case, Eq. 5 reduces to Eq. 4.

Cases of “symmetric overdetermination” can be modeled by setting α to 0. If both

potential causes are by definition assumed to act symmetrical in this type of situation,

it seems normative to judge both to be singularly causally linked to e (cf. Lagnado &

Gerstenberg, 2017; Pearl, 2000; Schaffer, 2003). Empirical studies that explicitly

investigated this type of situation have yielded mixed results (see Sloman & Lagnado,

2015, for an overview). Some studies (Spellman & Kincannon, 2001) found that people

seem to regard symmetrically overdetermining causes as highly causal. Others found

that such cases are viewed as less causal than cases of preemption (e.g., Gerstenberg,

Goodman, Lagnado, & Tenenbaum, 2015).

The experiments conducted by Stephan and Waldmann (2018) aimed to provide a

first demonstration that subjects’ singular causation judgments deviate substantially

from the predictions of the standard causal attribution model when the context

suggests that the alternative causes tend to preempt the target cause in its efficacy. In

their Experiment 1, subjects were presented with a causal induction task in which the

contingency information about a single cause and effect was presented in a summary

format (cf. Fig.,1). Subjects were then asked to make a singular causation judgment

about a randomly selected case from the treatment group that exhibited the effect.

Stephan and Waldmann (2018) used a cover story in which it was plausible that

the alternative causes preempted the target cause in its efficacy. The cover story
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described a fictitious scientific study (cf. Griffiths & Tenenbaum, 2005) in which

biologists investigated the influence of a chemical substance on the expression of a

particular gene in mice. It was described that the biologists examined two random

samples of mice, one treated with the chemical substance and one that served as a

control group. It was explicitly stated that the control group had to be included

because it is known that some mice might be expressing the gene for natural reasons.

This information was assumed to induce the intuition that preemption of the target

cause by alternative causes was likely. It seems plausible that mice who were expressing

the gene for natural reasons were already doing so before the biologists selected and

treated the mice with the chemical substance. After subjects had inspected the

contingency information, they were shown a single mouse from the treatment group

that exhibited the effect and were asked to indicate how confident they were that this

particular mouse was exhibiting the effect because of the treatment. Stephan and

Waldmann (2018) therefore modeled the studied cases assuming an α value of 1. The

experiments supported this model. Additional control conditions indicated that subjects

did indeed assume high values for the α parameter of the extended model.

Although subjects’ singular causation judgments in the experiment were captured

well by the extended model incorporating the possibility of preemption, they are also in

line with the predictions that the standard model makes for situations in which the goal

is to estimate the probability with which the target cause alone produced the effect (cf.

Eq. 5). A shortcoming of the study was that the factors that influence assumptions

about the α parameter were neither spelled out nor experimentally manipulated.

4 Assessments of singular causation are sensitive to temporal assumptions

We have argued in the previous section that the assessment of singular causation

needs to take the possibility of causal preemption into account. We showed how the

causal power theory of causal attribution can be extended in order to handle the

problem of causal preemption by incorporating the product of wC , wA, and the newly

introduced parameter α. A crucial component for the estimation of the probability of
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Figure 5 . Illustration of the temporal components relevant for the assessment of the

potential preemptive relation between two potential causes of an effect. A) illustrates

the relevance of the instantiation times of the potential causes. B) illustrates the

relevance of the causal latencies of the potential causes.

preemption is information about the causal strengths of the potential causes: It needs

to be determined in a first step how likely it is that the effect was probabilistically

overdetermined by the potential causes on the target occasion because causal

preemption is only in these occasions possible. In a second step, it needs to be estimated

how likely it is that the target cause was actually preempted by the alternative causes

on such occasions. This probability is expressed by the newly introduced α parameter.

Intuitions about causal preemption involve considerations about the temporal

relations between the potential causes and the effect. We propose that temporal

assumptions about these relations determine the value of α. To demonstrate the

plausibility of this claim, we will again focus on situations in which there are two

potential causes of an effect E, the target cause C and an alternative cause A.

4.1 Onset differences

One relevant type of temporal information is information about the onset times of

the potential causes. Everything else being equal, if a occurs earlier than c on an

occasion on which both are probabilistically sufficient for the effect, then a will preempt

c. Conversely, c preempts a when c occurs earlier than a in this kind of situation. The

standard example about Billy and Suzy discussed above exemplifies this structure. The

instantiation times of two potential causes c and a can be denoted as tc and ta, and the
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difference between them can be denoted as ∆t = ta − tc. A schematic illustration using

time indexed neuron diagrams is depicted in Fig. 5A. Formally, if two potential causes c

and a are both sufficiently powerful on an occasion, c preempts a in causing e when ∆t

is positive. Conversely, a preempts c in causing e when ∆t is negative. A general-level

representation ∆T can be obtained through averaging over the observations of ∆t.

4.2 Causal latencies

Another type of temporal information relevant for the assessment of preemption is

information about the causal latencies of the potential causes. By causal latency we

mean the time it takes a cause to produce its effect. For example, swallowing a dose of

a pain killer does not bring relief right away. It takes a particular amount of time until

the medicine manifests its capacity. When we enter an elevator and press a button, it

takes a moment until the elevator begins to move. Even when we press a button on the

remote control, the TV does not react instantaneously.

An important characteristic of causal latencies is that they are, like causal powers,

unobservable properties of causes. The causal latency of a cause factor C, which can be

formally expressed as t(C→E) (cf. Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018),

must be inferred from observable onset differences between singular instantiations of C

and E. Only in an environment that is shielded from potential alternative causes does

the observed onset difference between c and e represent a direct measure of the causal

latency of c; just like ∆P is only representing a direct measure of causal power when the

base rate of the effect in the learning context is zero. The remote control and the pain

killer scenarios are good illustrations for this property. Whereas TVs rarely turn on

unless we press the button on the remote control, headaches typically subside even

without the help of aspirin. Both the causal power as well as the causal latency of the

painkiller are much harder to learn than the causal power and the causal latency of the

remote control.

Neuron diagrams illustrating the relevance of causal latency for preemption are

depicted in Fig. 5B. Everything else being equal, a probabilistically sufficient potential
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cause c of the effect e preempts a simultaneously sufficient potential alternative cause a

on an occasion if c’s causal latency, t(c→e), is smaller than a’s, t(a→e). Causal latency

here refers to the time it would have taken the target cause to produce the effect if it

had acted in isolation. Conversely, a preempts c in causing e if a’s causal latency is

smaller than c’s on such an occasion. Of course, the “everything else being equal”

criterion will rarely hold in real life situations. On most occasions different onset times

will be combined with different causal latencies. This leads to the possibility that

causes with high causal latency can even preempt alternative causes if they have an

onset advantage on their side. Likewise, causes that occur after their competitors can

still manage to preempt them if they have a small causal latency.

The example about the elevator or about the light traveling from the remote

control to the receiver shows that it might sometimes be appropriate to represent the

causal latency of a cause factor as a stable, fixed value. In most contexts, however,

causal latencies will appear variable. The pain killer scenario provides an example for

such a context. A dose of medication might be expected to take effect after about

twenty minutes, but one would probably not be too surprised if the effect occurred a bit

earlier or a bit later. In such contexts it seems appropriate to represent the causal

latency of a factor as a random variable following a particular distribution. Variations

of causal latencies might be causally explained by the operation of unobserved hasteners

or delayers (Lagnado & Speekenbrink, 2010). For example, the time it takes an Aspirin

to bring relief is influenced by various factors, including the momentary concentration of

gastric acid in the person’s stomach, her momentary blood pressure, and so on.

A standard way of modeling latencies that exhibit variation is to use gamma

distributions, which are, for example, used in queueing theory to model waiting times

(Shortle, Thompson, Gross, & Harris, 2018). In a recent study in which Bramley et al.

(2018) investigated the role of time in general-causal structure induction, gamma

distributions were used to model causal latencies. The gamma distribution belongs to

the family of continuous probability distributions and represents a generalization of the

exponential distribution. It is characterized by two parameters: shape, κ > 0, and scale,
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Figure 6 . Example of gamma distributions with different shape (κ) and scale (θ)

parameters. The expected value of a gamma distribution is given by E[X] = κ · θ. The

expected values of the example distributions are illustrated by the vertical lines.

θ > 0. The expected value of a random variable X following a gamma distribution is

E[X] = κ · θ. Its variance is V ar[X] = κ · θ2. Different gamma distributions together

with their expected values are shown in Fig. 6.

4.3 Modeling the factors underlying the α parameter

The formalization of the different temporal components that influence the

probability of preemption allow it to quantify α for different types of situations. We will

focus again on the type of situation that we have already considered above in which a

reasoner has learned that two potential causes C and A and their effect E have

co-occurred (c, a, e) on an occasion. We here consider contexts in which the causal

latencies of the potential causes have been learned through multiple observations and in

which the causes’ onset difference in the target situation is known. In these cases, the

probability that the target cause c was preempted by the alternative cause a if both

happen to be simultaneously sufficient for the effect corresponds to:

α = P (ta→e + ∆t < tc→e|e, c, a). (6)

In this situation, α is the probability that the sum of the causal latency of the
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competing cause a and the time lag between c’s and a’s onset times is smaller than the

causal latency of c given e, c, a. When the causal latencies can be represented as fixed

values, like in the remote control example, α can be determined by comparing the

simple sum of t(a→e) and ∆t with t(c→ e). In this case, α will either be 0 or 1. In the

more complicated case in which the causal latencies exhibit variability and are modeled

with gamma distributions, α can take on any value between 0 and 1, and can be

estimated with the following Monte Carlo (MC) algorithm:

1. Sample N pairs of causal latencies (tc→e, ta→e) from the latency distributions

(tC→E, tA→E) of C and A, respectively.

2. Calculate ta′→e = ta→e + ∆t for all sampled ta′→e-values.

3. Count all pairs for which ta′→e < tc→e.

4. Divide this count by N .

For an illustration, consider Fig. 6 again. Assume that the causal latency of the

target cause C followed the gamma distribution with the parameters κ = 10 and

θ = 150, and that the causal latency of the alternative cause A corresponded to the

distribution with the parameters κ = 50 and θ = 50. The expected value of the target

cause’s causal latency is E = κ · θ = 1500ms, while the causal latency of the

alternative cause has an expected value of E = κ · θ = 2500ms. Hence, the target

cause tends to manifest its causal capacity quicker than its competitor. However, there

is also a substantial overlap between the two causal latencies which implies that there

will be occasions in which the alternative cause outperforms the target cause. As we

have seen, the α parameter captures the probability with which this happens by

additionally taking the onset asynchrony of the causes into account. For occasions on

which the two causes occur simultaneously (i.e., ∆t = 0) the MC algorithm presented

above yields a value of α = 0.05, which means that the probability that a acts quicker

than c in such a singular occasion is five percent. Now imagine that it is known that

both causes not only occurred at the same time but also that their causal latencies
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followed the same gamma distribution, that is, that the two distributions fully overlap.

In this case, α would be 0.50, because in a set of randomly sampled pairs of causal

latencies, the latency of the alternative cause would be smaller in half of the pairs.

Finally, consider the computationally simpler case in which causal latencies can be

represented as fixed values, like in the remote control example. The same sampling

algorithm can be used to estimate α in this case. However, it is easy to see that α will

either be 1 or 0 in such situations depending on whether the sum of t(a→e) and ∆t is

smaller than t(c→e) or not.

The focus of the present research is on the role of temporal assumptions in

singular causation judgments. Given, however, that singular and general causation are

coupled it is important to know what role temporal assumptions play in general causal

learning (see Buehner, 2017, for a review). A typical early finding was that reasoners

seem to have a strong preference for spatio-temporal contiguity when learning about the

strengths of causes (e.g., Shanks, Pearson, & Dickinson, 1989). These studies

manipulated temporal gaps and found that learning about contingencies becomes more

difficult with increasing spatio-temporal distance between causes and effects.

However, contiguity becomes less potent once background knowledge about

latencies is activated by means of cover stories drawing on prior knowledge. For

example, Hagmayer and Waldmann (2002) showed that assumptions about temporal

delays determine which events in a sequence of observed events are considered

candidates for a causal relation, which in turn affected which contingencies were learned

as indicators of causal strength.

Another study by Buehner and McGregor (2006) confronted subjects with an

unfamiliar apparatus in which marbles running down a pathway could activate different

switches connected to a light bulb. During an inspection phase, the steepness of the

pathways within the machine was varied, which either suggested a relatively small or a

relatively large delay between marble insertion and the activation of light. During the

test phase, the mechanism of the device was covered and subjects observed multiple

instances of marble insertion and light activation. The observed delays were either

APPENDIX C. STEPHAN, MAYRHOFER, AND WALDMANN (SUBM.) xlii



CAUSAL STRENGTH AND TIME IN SINGULAR CAUSATION 21

compatible or incompatible with previously learned causal mechanisms. The results

showed that subjects who observed highly contiguous successions of events only gave

high causality ratings when the mechanism in fact suggested short delays, while

causality ratings were low when subjects expected the delays to be longer.

In another study, Lagnado and Speekenbrink (2010) showed that lowered causal

strength judgments with increasing causal delays might be due to subjects’ assumptions

about the preemptive relation between the target cause and potential alternative causes

that occur in the delay period. In their experiment, Lagnado and Speekenbrink (2010)

varied the causal latency of the target cause factor and the probability with which

alternative causes of the effect occurred during the cause-effect interval. This

experimental design allowed it to compare causal judgments between conditions with

equal causal latencies but varying probabilities with which potential alternative causes

occurred before the effect occurred. Causal judgments tended to be lower when the

probability of the occurrence of alternative causes before the occurrence of the effect

was high but not when this probability was low, presumably because the occurrence of

alternative causes before the occurrence of the effect opens up the possibility that the

target cause was preempted. Variation in causal latency alone did not affect causal

judgments in this study.

Whereas the study of Lagnado and Speekenbrink (2010) focused on the role of

temporal relations and possible cases of preemption in samples of causal events (i.e.,

general causation learning task), our focus in the following four experiments will be on

the interaction between causal strength, temporal assumptions and preemption in

judgments about singular causation relations. These studies will test our generalized

model of singular causation judgments.

5 Experiment 1

The goal of Experiment 1 was to test whether the two temporal components,

causal latency and onset difference, would actually affect reasoners’ singular causation

judgments in the way predicted by the new model. The α parameter of the new model
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Table 1

Overview of the set of different situations tested in Experiment 1.

(1) Different onsets but

equal causal latencies

(2) Equal onsets but

different causal latencies

(3) Different onsets and

causal latencies (A)

(4) Different onsets and

causal latencies (B)

Cause A Cause B Cause A Cause B Cause A Cause B Cause A Cause B

Onset (ms) 800 1600 800 800 1600 800 800 2400

Causal latency (ms) 800 800 800 1600 800 2400 1600 800

Sum 1600 2400 1600 2400 2400 3200 2400 3200

integrates onset and causal latency information and assigns equally important roles to

both factors, which means that a relatively slowly acting cause might compensate its

disadvantage on this dimension with an advantage on the onset dimension and vice

versa. This implies, for example, that reasoners should sometimes attribute causality to

the cause that had a larger temporal distance to the effect on a singular occasion than

the alternative cause. The present experiment tested if subjects would actually

integrate both types of information in this way. Moreover, the first study aimed to

isolate the influence of the temporal factors from the influence of causal power. This

was achieved by testing causes with deterministic powers. The standard causal power

model of attribution (Eq. 3) predicts high singular causation ratings in this case.

Finally, to keep things relatively simple in this first experiment, the cause factors were

assigned fixed, non-varying causal latencies.

The four different scenarios involving two potential causes, A and B, of a single

effect are shown in Table 1. It can be seen that the two potential causes A and B were

associated with different combinations of causal latency and onset times across the

different situations. When both potential causes have equal causal powers, our model

predicts that subjects should give high singular causation ratings for to the cause that

minimizes the sum of causal latency and onset time, as it is unlikely that this cause was

preempted by its competitor. The sum of causal latency and onset time for each of the

two potential causes is listed in the last row of Tab. 1.Subjects were expected to give

high singular causation judgments when the target cause was Cause A and low singular

causation judgments when the target cause was Cause B.
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In the first scenario the influence of onset differences was isolated and both causes

had identical causal latencies. While both potential causes always produced the effect

after 800 ms in this scenario, the onset difference was ∆t = 800ms. The second scenario

tested the influence of causal latencies. Both causes always occurred simultaneously

800ms after a trial had begun, but produced the effect with different latencies.

The last two scenarios (3 and 4) pitted causal latency and onset difference against

each other. Two different versions (A and B) tested whether subjects actually

integrated both temporal components or whether they considered one component more

important than the other. For example, had we only tested the third scenario, higher

singular causation judgments for cause A could have been explained by a bias towards

relatively low causal latencies. Likewise, results in the expected direction in scenario 4

could have been explained by a bias towards causes with an onset advantage.

5.1 Method

5.1.1 Participants. Three hundred and eighty-four subjects (Mage = 35.14,

SDage = 12.38, 202 female, 178 male, four subjects did neither indicate male nor female

as their gender) were recruited via Prolific (www.prolific.ac). This sample size

(n = 96 subjects per scenario) allows it to detect medium effects (of d = 0.60) in single

group comparisons conducted with conservative two-sided t-tests with more than 80

percent test-power. We planned to analyze the data using planned contrasts, however,

which guarantees an even higher test-power. No data were analyzed until n = 96

subjects per condition had completed the study. Subjects were at least 18 years old,

had at least an A-level degree, were native English speakers, and had a work acceptance

rate of at least 90 percent. Subjects were paid £ 1.25 for their participation.

5.1.2 Design, materials, and procedure. Subjects were randomly assigned

to one of four different scenarios (n = 96) that varied with respect to the combination

of causal latencies and onset differences of the two potential causes as shown in Tab. 1.

Several factors were balanced between subjects that will be described below.

Subjects were presented with a story about a fictitious medieval kingdom called
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Figure 7 . Illustration of the learning task used in Experiment 1.

“Extonia” whose king had two watchtowers (“North” and “South”) built at the border

to protect the empire from invading barbarians. Subjects learned that the watchtowers

were instructed to send carrier pigeons to the palace to cause alarm whenever they

spotted barbarians approaching the border. It was described that pigeons automatically

set off an alarm the moment they arrive at the palace. Participants were then asked to

take the perspective of Extonia’s secretary of defense who wants to inspect the efficacy

of the kingdom’s defense system. It was mentioned that two factors must be

investigated: the flight durations of the pigeons from the two towers and the alertness of

each tower (i.e., how quickly each tower reacts when barbarians are coming). The flight

durations of the pigeons constituted our manipulation of the towers’ causal latencies,

whereas the reaction times of the towers allowed us to manipulate the onset differences.

Participants were further instructed that they will learn about the two factors in

separate learning phases. They were also informed that they will observe ten pigeons

from each tower in the flight-duration phase (i.e., 20 observations in total) and that

they will make ten observations in the alertness phase. The instructions additionally

contained illustrations of how the animations in the two different learning phases will

look (see Fig. 7). Finally, participants were informed that at the end they will be asked

to answer a causal query about a singular occasion on which the palace was alarmed.

Before participants could proceed to the learning phase, they had to pass five

instruction check questions probing their understanding of the scenario. Subjects who
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failed to answer all these questions correctly four times in a row were counted as invalid

and excluded from the data set prior to any analysis of the data.

Whether subjects first learned the flight durations of the pigeons (cf. Fig. 7A) or

began with the onset differences (cf. Fig. 7B) between the two towers was balanced

between subjects. The flight-duration learning phase consisted of two parts, as subjects

observed the two towers separately. Whether participants began with tower “North” or

“South” was also counterbalanced between subjects. In each trial, the sending of a

carrier pigeon was indicated by a colored circle surrounding the active watchtower with

a delay of 500ms. The corresponding inactive tower was transparent (see Fig. 7A). The

arrival of the pigeon at the palace was indicated by a colored circle surrounding the

palace. The circles always remained visible until a trial had ended. The ten flight

durations presented for each tower depended on the causal latencies tested in the

respective conditions. Whether tower “North” or tower “South” had the faster pigeons

was counterbalanced between subjects. After each trial participants had to click a

“Next” button to proceed to the next observation. The “Next” button was operational

500ms after the circle around the palace was shown. After subjects finished their

observations, they proceeded to an intermediate screen on which they were informed

that they will now investigate the second relevant factor. The content of the

intermediate screen depended on the order of the learning phases. The animation shown

during the onset-learning phase resembled the illustration depicted in Fig. 7B. The

palace was masked with a grey rectangle in this phase to underline that it was irrelevant

here. As in the flight-duration phase, the sending of letter pigeons was indicated by

colored circles surrounding the towers. The ten onset-differences that subjects observed

in this phase depended on condition. Whether tower “North” or tower “South” reacted

quicker was balanced between subjects.

Subjects then proceeded to the description of the target situation. A singular

occasion was described on which the palace had been alarmed and on which a horde of

invading barbarians had been repelled successfully. Participants read that the people of

Extonia wanted to decorate the crew of the tower that caused the alarm on this
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occasion. All that the Extonians knew, however, was that both towers had spotted the

barbarians and had sent a pigeon to the palace on this occasion. Subjects were also

presented with an image showing colored circles around each tower and around the

palace. We then asked subjects to indicate how strongly they believed that the alarm

was caused by tower “North”/ “South” on this occasion. Judgments were provided

using an eleven-point rating scale with end points “definitely not caused by Tower

‘North/ South”’ and “definitely caused by Tower ‘North/ South”’ (the midpoint was

labeled “50:50”). This rating was intended to measure P (c→ e|c, a, e). Whether the

test question referred to tower “North” or “South” was counterbalanced between

subjects. A bipolar rating scale with one tower on either side of the scale would have

forced subjects to decide for one of the towers, which would have introduced a

disadvantage for the power PC model of causal attribution. As the power PC model of

causal attribution solely focuses on causal power information, it predicts that both

towers should be considered causal in this case. Finally, the orientation of the rating

scale (i.e., whether high confidence had to be expressed on the left or on the right side

of the scale) was also counterbalanced between subjects.

5.2 Results and discussion

The results are summarized in Fig. 8. As can be seen, subjects made different

singular causation judgments for the two potential causes in the four scenarios, which

shows that they applied their temporal background knowledge about both the onset

differences and the causal latencies. The upper two panels in Fig. 8 show the results for

the two scenarios that tested each temporal component in isolation (Scenarios 1 and 2

in Tab. 1). The left panel shows the results for Scenario 1 in which both causes had the

same causal latency but different onsets, while the right panel shows the results for

Scenario 2 in which both causes had identical onsets but different causal latencies. In

the condition in which one cause factor tended to occur earlier than the other but both

had identical causal latencies (Scenario 1) subjects who were asked about the early

cause (Cause A in Table 1) gave higher singular causation judgments (M = 0.75,
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Figure 8 . Results (bars represent mean singular causation ratings; error bars denote

95% bootstrapped CIs; red points show jittered individual ratings; black points show

medians) of Experiment 1.

SD = 0.24, Mdn = 0.80, 95%CI = 0.07) than subjects who were asked about the

“late” cause (M = 0.21, SD = 0.24, Mdn = 0.10, 95%CI = 0.07). A planned contrast

revealed that this difference was significant, t(376) = 9.9, p < .0001, d = 2.25. In the

scenario in which both causes had synchronous onset times but varying causal latencies

(Scenario 2), subjects gave higher singular causation ratings when asked about the

cause with the smaller causal latency (M = 0.83, SD = 0.21, Mdn = 0.90,

95%CI = 0.06) than when asked about the cause with the higher causal latency

(M = 0.25, SD = 0.25, Mdn = 0.10, 95%CI = 0.07). A planned contrast revealed

that this difference was significant, t(376) = 10.68, p < .0001, d = 2.76.

The results for the first two scenarios show that subjects used their knowledge
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about causal latencies and onset differences when making singular causation judgments.

To test whether subjects actually integrated the two types of temporal information as

predicted by the model, ratings in Scenarios 3 and 4 were compared. These ratings are

shown in the bottom panels of Figure 8. They reveal that subjects tended to answer as

predicted by the model. In Scenario 3, subjects gave higher singular causation ratings

when asked about the cause with the smaller causal latency (M = 0.66, SD = 0.30,

Mdn = 0.80, 95%CI = 0.09) than when asked about the cause with the larger causal

latency (M = 0.47, SD = 0.32, Mdn = 0.50, 95%CI = 0.09), even though the onset

difference pointed in the other direction. A planned contrast testing this difference was

significant, t(376) = 3.56, p < .001, d = 0.63. However, one possible explanation for this

pattern is that subjects might have had a general bias towards smaller causal latencies.

The ratings obtained in Scenario 4 show that this does not explain the judgments.

Subjects here gave higher singular causation ratings when asked about the cause with

the larger causal latency (M = 0.69, SD = 0.28, Mdn = 0.75, 95%CI = 0.08) than

when asked about the cause with the smaller causal latency (M = 0.42, SD = 0.25,

Mdn = 0.50, 95%CI = 0.07). A planned contrast testing this difference was significant,

t(376) = 4.87, p < .0001, d = 0.96. Subjects did also not have a general tendency to

favor the cause that had an onset advantage, as one could have hypothesized based on

the results of Scenario 4 alone. In Scenario 3, the cause with the onset advantage

received lower ratings than the cause with the onset disadvantage. Additional evidence

for subjects considering both temporal dimensions to be equally important is that the

difference between the two causes is similar across the Scenarios 3 and 4.

The results of this experiment show that subjects integrated both types of

information when making singular causation judgments, and that they, in line with

what the new model predicts, generally favored the cause that minimized the sum of ∆t

and causal latency. The fact that the observed differences were overall smaller in

Scenarios 3 and 4 than in Scenarios 1 and 2, where the causes differed on only one

temporal dimension, can be explained by the higher difficulty of the computation in the

more complex cases. The more complex conditions were also more memory demanding.
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Subjects had to retrieve from memory information about the degree to which the causes

differed on both dimensions, while it sufficed in the first two scenarios to remember the

ordinal ranking of the causes on a single discriminating dimension.

6 Experiment 2

Experiment 1 represents a successful demonstration that reasoners apply more

than just their knowledge about the causal powers of the potential causes when

assessing how likely it is that a particular factor C was causal on a singular occasion.

We demonstrated that reasoners also rely on what they have learned about different

types of temporal factors, the onset times of the causes and their causal latencies.

The causal latencies that subjects learned in Experiment 1 had fixed non-varying

values, which is something that people might only rarely experience in their everyday

lives. As we have pointed out above, the more natural case is that causal latencies

exhibit some degree of variability. The goal of the second experiment was therefore to

investigate such cases. We compared different conditions in which the two potential

causes were paired with causal latencies that followed different gamma distributions.

On the assumption that variations of causal latencies are the default situation, we

expected subjects to be sensitive to this factor. We expected that subjects’ singular

causation judgments will be in line with the predictions of our modified model.

However, another possibility is that subjects might only estimate the expected values of

the causal latencies. The way in which we manipulated causal latencies in the present

study allowed us to test both possibilities (see Fig. 10). Again, we restricted the

scenarios to deterministic causes to be able to focus on the contribution of causal

latency information. Furthermore, subjects were instructed that the onsets of both

causes occurred simultaneously in each scenario.

The pairs of gamma distributions that were contrasted in the five different

conditions of the experiment are shown in Fig. 9. As can be seen, the distances between

the distributions (G1 - G5; higher numbers indicate higher expected values) in the

different conditions varied quantitatively, from fairly extreme in Condition 1, for
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Figure 9 . Pairs of gamma distributions contrasted in the five conditions of Exp. 1. The

shape (κ) and scale (θ) parameters of the five different gamma distributions are listed

for each pair. The depicted α values were obtained using the MC algorithm

corresponding to Eq. 6. The dark distributions show the causal latencies of the target

cause and the light distributions show the causal latencies of the alternative cause.

example, to identical in Condition 3. The latency distribution belonging to the target

cause C in each condition is depicted in dark blue. In Condition 1, for example, which

contrasted the distributions G1 and G5, the target cause’s latency follows G1, whereas

the latency of the alternative cause follows G5. Conditions 4 and 5 involve the same

pairs of distributions as Conditions 1 and 2, but the distribution associated with the

target cause was changed. Fig. 9 also shows the different α values estimated with the

sampling algorithm presented above. For the first pair, for example, α equals 0.01. In

the case of deterministic causes α corresponds to the probability that c was preempted

by a. Thus, participants should be confident in this condition that it was indeed the

target cause c that brought about the observed outcome. In the fifth condition, by

contrast, in which C follows G5 and A follows G1, participants should be confident that

c did not cause the effect. Fig. 9 also shows that all the other conditions should elicit

more uncertainty. In the third condition, for example, in which C and A have the same

latency distribution (G3), α = 0.50, participants should be maximally uncertain about
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Figure 10 . Model predictions and results (bars show mean singular causation ratings;

error bars denote 95% bootstrapped CIs; red points show jittered individual ratings;

black points show medians) for the different conditions (see Fig. 9) of Exp. 2. The

predictions of the Standard power PC model of causal attribution were obtained from

Equations. 3 and 4. The predictions of the generalized model were based on different

ways of estimating alpha. The first of these plots shows the predictions obtained when

α is calculated based on the expected values of the respective gamma distributions. The

second plot shows the predictions obtained when α is estimated based on the gamma

distributions.

the singular cause of the outcome.

Fig. 10 shows the predictions that the different models make. The predictions

made by the standard power PC model of causal attribution are shown in the first two

panels. The first panel shows the predictions derived from Eq. 3. We also included the

predictions derived from Eq. 4f, which are shown in the second panel. We wanted to

show that subjects do not misinterpret our test question and understand it as one that

is asking for the probability that “c alone” caused e on the target occasion. Note that

the “c alone” query according to the standard model asks for the probability with which

c alone was probabilistically sufficient on an occasion; the standard model equates
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sufficiency with causality. If subjects equated sufficiency with causality and understood

the test query as a “c alone” query, we should expect low ratings in all conditions (see

second panel in Fig. 10). The third panel in Fig. 10 shows the predictions that the

generalized model makes when α is estimated based on the expected values of the

causes’ causal latencies. In this case, the cause factor with the lower expected value of

causal latency is identified as the singular cause. When both causes have the same

expected causal latency value (Condition 3), the situation is treated as a case of

symmetric overdetermination. Finally, the fourth panel shows the predictions that the

new model (Eq. 5) makes when α is estimated based on the respective causal latency

distributions.

6.1 Methods

6.1.1 Participants. Two hundred subjects (Mage = 27.14, SDage = 8.71, 119

female, 91 male) were recruited via Prolific (www.prolific.ac). This sample size

(n = 40 subjects per condition) allows it to detect medium effects (of d = 0.60) in

simple group comparisons using conservative t-tests with more than 80 percent test

power. The plan, however, was to analyze the data by fitting quantitative trends, which

guarantees an even larger test power for medium effects. No data were analyzed until

n = 40 subjects per condition had completed the study. Subjects were at least 18 years

old, had at least an A-level degree, were native English speakers, and had a work

acceptance rate of at least 90 percent. Subjects were paid £ 0.80 for their participation.

6.1.2 Deign, materials, and procedure. Participants were randomly

assigned to one of five conditions, which varied with respect to the contrasted gamma

distributions and with respect to the gamma distribution associated with the target

cause (see Fig. 9). Because we included several balancing factors, the full design had 40

conditions. The additional balancing factors will be introduced below.

The cover story and the paradigm were largely identical with the one in

Experiment 1. Subjects read that Extonia’s secretary of defense wanted to inspect the

flight durations of the pigeons from the two towers. Then subjects were instructed that

APPENDIX C. STEPHAN, MAYRHOFER, AND WALDMANN (SUBM.) liv



CAUSAL STRENGTH AND TIME IN SINGULAR CAUSATION 33

the flight durations tend to differ between different pigeons, and that subjects will

therefore observe a sample of thirteen pigeons from each tower. Subjects were also

informed that they will be asked to answer a causal query at the end about a singular

instance in which the palace was alarmed. Before participants could proceed to the

learning task, they had to pass five instruction check questions testing their

understanding of the scenario. Subjects who failed to answer all these questions

correctly four times in a row were counted as invalid and excluded from the data set

prior to any analyses of the data.

During the causal-latency learning task the screen looked similar to the picture

shown in Fig. 7A. Whether participants began their observations with tower “North” or

“South” was counterbalanced between subjects, like in Experiment 1. The thirteen

flight durations presented for each tower corresponded to thirteen quantiles of the

respective gamma distribution. This was done so that relatively small but yet

representative samples of the respective distributions could be presented. After each

trial, participants had to click a “Next” button, which was operational 500ms after the

circle around the palace had been displayed. The thirteen flight durations per tower

were presented in random order. After subjects had observed both towers, they

proceeded to an intermediate screen on which they were informed that they will next be

shown the singular event to which the test query refers.

Like in Experiment 1, the test scenario described a singular event in which the

palace was alarmed and a horde of invading barbarians could be repelled successfully.

Participants read that the people of Extonia wanted to decorate the crew of the tower

that caused the alarm and that it was known that both towers had sent their pigeons

simultaneously. Subjects had to indicate how strongly they believed that the alarm was

caused by tower “North”/ “South”. Like in Experiment 1, judgments were provided

using an eleven-point rating scale with the end points “definitely not caused by Tower

‘North/ South” and “definitely caused by Tower ‘North/ South”’ (the midpoint was

labeled “50:50”). Whether the test question referred to tower “North” or tower “South”

was counterbalanced between subjects. The orientation of the rating scale (i.e., whether
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Table 2

Summary of the results of Exp 2.

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Median 0.90 0.80 0.50 0.30 0.10

Mean 0.91 0.69 0.54 0.37 0.11

SD 0.10 0.22 0.24 0.19 0.12

95% CI 0.03 0.07 0.08 0.06 0.04

high confidence had to be expressed on the left or on the right side of the scale) was

also counterbalanced between subjects.

6.2 Results and Discussion

The results are summarized in Fig. 10 and in Tab.2. As can be seen, participants’

singular causation ratings followed a negative linear trend. A polynomial trend analysis

revealed that the observed negative linear trend was significant, F (4, 195) = 111.70,

p < .001, r = .83. No other polynomial trend was significant.

The results are at odds with the predictions made by the two variants of the

standard power PC model of causal attribution that we considered (Equations 3 and 4).

As had already been observed in Experiment 1, subjects used information about the

causal latencies of the potential causes to derive singular causation judgments.

Moreover, the singular causation judgments closely followed the predictions of the

version of our new model that utilizes gamma distributions to represent causal latencies

(Eq. 5). There was a high correlation between model predictions based on the gamma

distributions and individual ratings, r = .83, p < .001, which is depicted graphically in

the left scatterplot of Fig. 11. We also analyzed the fit between model predictions and

mean singular causation judgments in the different conditions. The correlation between

model predictions and group means is depicted in the right panel of Fig. 11. This

correlation amounted to r = .99, p < .001.
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Figure 11 . Scatterplots depicting the correlations between predictions of the generalized

model and individual singular causation judgments (left; triangles represent medians)

and between model predictions and group means (right).

7 Experiment 3

In Experiments 1 and 2 deterministic causes were tested because we aimed to

isolate the influence that the introduced temporal factors exert on singular causation

judgments. However, causal power information should also play a crucial role in

singular causation judgments according to our model. A central new prediction of our

model is that causal power and temporal information are expected to interact. The goal

of Experiment 3 was to explore this core property of the model.

A scenario was tested in which both causes either had a causal power of

wC = wA = 0.83 or of wC = wA = 0.5. Causal latency was manipulated by using the

first pair of gamma distributions (G1 vs. G5) shown in Fig. 9. The causal latency of the

target cause was either associated with G1 or G5, while the causal latency of the

alternative cause always followed the complementary distribution of the pair. This

combination of causal powers and relative causal latencies of the potential causes leads

to a predicted interaction effect that is shown in the middle panel of Fig. 12. The x-axis

of Figure 12 shows the relative causal latency of the target cause, that is, whether it

followed distribution G1 or G5. As can be seen, when the target cause’s relative causal

latency is high (i.e., its causal latency follows G5 while the causal latency of the

alternative cause follows G1), the generalized model predicts that ratings should be

higher when the causal power of the target cause is low than when it is high (black vs.
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Figure 12 . Model predictions and results (bars represent mean singular causation

ratings; error bars denote 95% bootstrapped CIs; red points show jittered individual

ratings; black points show medians) of Exp. 3. The x-axis shows the relative causal

latency of the target cause.

grey bars in Fig. 12). Conceptually, this condition represents a scenario in which a

reliably working target cause is competing with an alternative cause that not only is

also working reliably but that also tends to operate quicker than the target cause. This

should make it very unlikely that the target cause was the singular cause of the effect

on an occasion on which both factors were present. Mathematically, the product that is

subtracted from wC in the high-power condition (black bar in the left pair) is

sufficiently large so that the numerator ends up smaller (0.83− 0.83 · 0.83 · 0.99 = 0.15)

than in the low-power condition (grey bar in the left pair; 0.5− 0.5 · 0.5 · 0.99 = 0.25).

Furthermore, the denominator is smaller in the low-power condition than in the

high-power condition (0.5 + 0.5− 0.5 · 0.5 = 0.75 vs. 0.83 + 0.83− 0.83 · 0.83 = 0.97),

which means that the numerator in the low-power condition is increased more strongly

than in the high-power condition. Fig. 12 also shows that the new model predicts the

reversed effect when the relative causal latency of the target cause is low (i.e., when it

follows G1; see right pair of bars in the middle panel of Fig. 12). Here, the product that

is subtracted in the numerator from the target cause’s causal power becomes small

because the target cause is operating quicker than its competitor. The causal-latency
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advantage that the target cause is having allows it to manifest its high causal power. In

this condition, our model makes the same predictions as the standard power PC model

of causal attribution (Eq. 3): subjects should give higher singular causation ratings in

the high causal power condition than in the low causal power condition. Finally, Fig. 12

shows that the new model also predicts a main effect of causal latency: Causes that on

average tend to precede the efficacy of their competitors (right pair of bars) should

receive higher singular causation ratings than causes whose competitors tend to

preempt them (left pair of bars). Finally, a main effect of causal power is predicted by

the standard but not by our generalized model.

7.1 Materials

7.1.1 Participants. One hundred and sixty subjects (Mage = 38.14,

SDage = 12.20, 116 female, 44 male) were recruited via Prolific (www.prolific.ac).

This sample size (n = 40 subjects per condition) allows it to detect medium effects of

d = 0.60 for simple group comparisons done with directed t-tests with more than 80

percent test-power. Subjects were at least 18 years old, had at least an A-level degree,

were native English speakers, and had a work acceptance rate of at least 90 percent.

Subjects were paid £ 1.20 for participation.

7.1.2 Design, Materials, and Procedure. Subjects were randomly assigned

to one of four conditions (n = 40) that resulted from a 2 (causal power of the two causes:

wC = wA = 0.83 vs. wC = wA = 0.50) × 2 (relative causal latency of the target cause:

high vs. low) between-subjects design. The following factors were counterbalanced

between subjects: the order of presentation of the two causes in the learning phase (i.e.,

tower “North” first vs. tower “South” first); which cause had the lower/ higher relative

causal latency; the target cause to which the main test question referred; the orientation

of the rating scale belonging to the main test question (high confidence on the left vs.

on the right side of the scale). This yielded 32 conditions in total.

The materials and procedure were largely the same as those of Experiments 1 and

2 with the following exceptions: First, information about the probabilistic causal nature
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of the towers was added to the instructions. Participants read that pigeons might get

lost on their way to the palace and that it would therefore be important to learn about

the pigeons’ arrival rates. Secondly, the learning task was modified so that causal power

and causal latency information were conveyed together.

Other than in Experiment 2, subjects observed 24 pigeons per tower. This was

done to ensure that all participants observe a sufficient number of successful pigeons to

be able to learn the towers’ causal latencies. Subjects in the high-power condition

observed 20 successful pigeons per tower, whereas subjects in the low-power condition

observed 12 successful pigeons per tower. The flight durations corresponded to 12 or 20

percentiles of the respective causal latency distributions. Whenever a pigeon failed to

reach the palace, the words “pigeon probably lost” were displayed five seconds after the

pigeon had been sent out. This duration corresponded to the 99.9th percentile of the

slower distribution G5. The singular causation test questions were identical with the

ones used in Experiments 1 and 2. Subjects were again asked to assess the probability

that tower “North”/ “South” caused the alarm on a singular occasion on which both

towers had sent their pigeons at the same time.

Additionally, on a separate screen subjects were asked to estimate the causal

powers of the two causes because we wanted to control for the possibility that subjects’

representations of the causal powers of the two causes might have been influenced by the

causes’ causal latencies. The new model considers causal power and causal latency to be

two independent properties of causes: While causal power solely reflects causal strength

(cf. Cheng, 1997), causal latency solely reflects the time it takes a cause to generate its

effect. Yet, subjects might not have kept causal power and latency information apart,

and might have, for instance, represented a relatively slow cause as less powerful than a

relatively fast cause. This would be problematic for the generalized model as the results

could then be explained by perceived differences in the causal powers alone. Empirical

evidence for the possibility of an influence of delays on causal strength representations

comes, for example, from the paper by Shanks et al. (1989), in which it was shown that

the degree to which subjects attribute causality to a self-initiated action was correlated
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negatively with the perceived delay between the action and the potential effect (see also

Reed, 1992, 1999). Likewise, Lagnado and Speekenbrink (2010) showed that longer

delays between the onsets of a potential cause and a potential effect lead to lower

causation ratings, which in their paradigm was explained by possible hidden factors

impinging on the causal process. Thus, the influence of temporal delays on causal

strength judgments seems to be due to uncertainty about the underlying causal

structure, especially about the possibility of unobserved factors.

To rule out uncertainty about the causal structure, we explicitly introduced the

complete general causal structure in the instructions, ruling out causal influences by

unobserved factors. Subjects in the present study were instructed that the two

(observed) causes were the only causes of the effect. To assess subjects’ causal power

representations, they were asked the following question for each tower, with the order of

presentation being randomized: “Based on what you have learned: how many out of 10

letter pigeons sent from Tower ‘North’ (‘South’) would make it to the palace?”. Ratings

were provided on an eleven-point scale (0 to 10).

7.2 Results and Discussion

The results are summarized in the right panel of Fig. 12. As can be seen, the

singular causation ratings followed the predictions of the new model, whereas the

standard power PC model of causal attribution does not explain the results. As for the

predicted interaction, Fig. 12 shows that when the relative causal latency of the target

cause was high, ratings in the low-causal power condition were higher (M = 0.40,

SD = 0.23, Md = 0.40, 95%CI = 0.07) than those in the high-causal power condition

(M = 0.29, SD = 0.26, Md = 0.20, 95%CI = 0.08). The reversed pattern was

obtained when the relative causal latency of the target cause was low (M = 0.67,

SD = 0.20, Md = 0.70, 95%CI = 0.06 when causal power was 0.50 vs. M = 0.75,

SD = 0.19, Md = 0.80, 95%CI = 0.06 when causal power was 0.83). A planned

contrast testing the predicted interaction was significant, t(156) = 2.68, p < .01,

d = .32. However, Fig. 12 also shows that the simple effects qualifying the interaction
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Figure 13 . Results (bars represent means; error bars denote 95% bootstrapped CIs; red

points show jittered individual ratings; black points show medians) for the causal-power

question in Exp. 3. The left panel shows the ratings for the condition in which both

causes had a causal power of 0.50. The right panel shows the ratings for the condition

in which both causes had a causal power of 0.83. The x-axis shows the relative causal

latency of the evaluated cause.

were smaller than predicted by the model (t(156) = 2.17, p = .016 one-sided, d = 0.44

for the condition the target cause had a relatively high causal latency vs. t(156) = 1.62,

p = .05 one-sided, d = 0.41 for the condition in which the target cause’s causal latency

was relatively low).

Fig. 12 shows that the results also indicate a main effect of the relative causal

latency of the target cause. A planned contrast testing this predicted main effect was

significant, t(156) = 10.47, p < .001, d = 1.62. Finally, the main effect of the causal

power of the causes, which is predicted only by the standard but not by the generalized

model, was not found.

The causal power ratings that subjects made are summarized in Fig. 13. As can be

seen, subjects’ causal power representations were not distorted by the different causal

latencies of the two causes. In the low-causal power condition (left panel in Fig. 13), the

mean ratings for the cause with the higher latency were M = 5.16 (SD = 1.07). The

mean ratings for the cause with the lower latency were M = 5.31 (SD = 1.18). In the

high-causal power condition (right panel in Fig. 13), the mean ratings were M = 7.58
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(SD = 1.75) for the cause with the higher causal latency and M = 7.66 (SD = 1.86)

for the cause with the lower causal latency. A mixed ANOVA with the relative causal

latency of the target cause as within-subject factor and the causal powers of the causes

as between-subject factor yielded a main effect only for the latter factor,

F (1, 158) = 122.68, p < .001, d = 1.6, confirming that subjects in the high-causal

power condition gave higher causal power ratings than subjects in the low-causal power

condition. Fig. 13 also shows that subjects’ causal power ratings were close to the

normative values of 0.83 and 0.50. Importantly, there was no main effect of the relative

causal latency of the target cause, F (1, 158) = 1.38, and also no interaction effect of the

relative causal latency of the target cause factor and the causal power of the cause

factor, F (1, 158) < 1. These results rule out that subjects’ singular causation ratings

can be explained by differences in the perceived causal powers of the causes.

8 Experiment 4

Although the pattern of singular causation judgments in Experiment 3 was

captured well by the new model, the predicted interaction effect turned out to be

relatively weak in the data. The predicted interaction follows from a core principal of

the new model, however, which is why we decided to try to replicate the results in a

fourth, pre-registered experiment that investigated a set of causal power parameters

that should lead to a more substantial interaction effect. The same causal latency

distributions were used as in the previous study but this time causes were contrasted

that either had a power of 0.93 or 0.40. The model predictions are depicted in Figure

14. The experiment was pre-registered at the Open Science Framework (OSF;

https://osf.io/). The pre-registration can be accessed under

https://doi.org/10.17605/OSF.IO/N93BU.

At the end of Experiment 3 subjects were asked to estimate the causal powers of

the two causes because it was important to control for the possibility that subjects’

causal power representations might have been influenced by the differences in the causal

latencies. The obtained results ruled out that subjects conflated the two types of
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information when uncertainty about causal structure was reduced. However, it is

possible that there is an influence in the other direction. Differences in the causal

powers might have an impact on causal latency representations. This is not unlikely in

the present paradigm because trials in which a cause failed to generate the effect ended

after a duration that corresponded to the 99.9th percentile of the slower causal latency

distribution (G5). Consequently, subjects in the low-causal power condition spent more

time on the task than subjects in the high-causal power condition. The present study

therefore assessed how strongly subjects’ causal latency representations might be

affected by causal power information.

8.1 Materials

8.1.1 Participants. Three hundred and eighty-four subjects (Mage = 34.25,

SDage = 11.38, 182 female, 200 male, two subjects did not indicate their gender) were

recruited via Prolific (www.prolific.ac). Subjects were at least 18 years old, had at

least an A-level degree, were native English speakers, and had a work acceptance rate of

at least 90 percent. They were paid £ 1.20 for participation. The sample size calculation

was done with the program G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007) and

based on the effect sizes found in a set of pilot studies conducted after the third

experiment prior to the pre-registration of the new study. Both Experiment 3 and these

pilot studies indicated that the smallest difference between the means is to be expected

in the condition in which the target cause has a relatively low causal latency (see right

pair of bars in Figure 12). With the calculated sample size, an independent-samples

t-test (one sided) comparing the mean difference in this condition would detect a

medium effect of d = 0.5 (alpha = 0.05) with about 95 percent probability.

8.1.2 Design, Materials, and Procedure. The study design was identical

to the one of Experiment 3, that is, subjects were randomly assigned to one of four

conditions (n = 96) that resulted from a 2 (causal power of the two causes:

wC = wA = 0.93 vs. wC = wA = 0.40) × 2 (relative causal latency of target cause: high

vs. low) between-subjects design.
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Figure 14 . Model predictions and results (bars represent mean singular causation

ratings; error bars denote 95% bootstrapped CIs; red points show jittered individual

ratings; black points show medians) of Experiment 4. The x-axis shows the relative

causal latency of the target cause.

As this experiment contrasted the causal power parameters of 0.93 and 0.40, the

learning phase differed from the one in Experiment 3 In the condition in which the

causes had a causal power of 0.93, subjects learned that each cause was successful in

bringing about the effect in 28 out of 30 attempts. In the low-causal power condition,

by contrast, each cause generated the effect in only 12 out of 30 occasions.

After subjects had answered the singular causation query, which was the same as

in the previous experiments, they were asked a final control question referring to the

causal latencies of the two causes. Subjects were asked to imagine an occasion on which

both towers simultaneously sent a pigeon, and then should indicate on an eleven-point

scale with endpoints “definitely the pigeon from Tower ‘North”’ and “definitely the

pigeon from Tower ‘South”’ (the midpoint was labeled “50:50”) which pigeon they think

would arrive at the palace first. Answers to this question allowed us to estimate the α
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parameter. The orientation of the scale (whether tower North was on the left or right

side of the scale) was randomly varied between subjects.

8.2 Results and Discussion

The results are summarized in the fourth panel of Fig. 14 where it can be seen

that the replication was successful. The results of a 2 (causal power of the two causes:

0.93 vs. 0.40) × 2 (relative causal latency of target cause: high vs. low) factorial

ANOVA confirmed that all effects predicted by the new model were significant. There

was a main effect of “relative causal latency of target cause”, F (1, 380) = 381.02,

p < .001, d = 2.0, confirming that singular causation ratings were overall higher when

the target cause had a shorter causal latency than the alternative cause. Importantly,

the interaction of “causal power” and “relative causal latency of target cause” was also

significant, F (1, 380) = 71.19, p < .001, d = .87. Contrast analyses testing the simple

effects that qualify the interaction showed that the difference between high and low

causal power was significant in both “relative causal latency of target cause” conditions,

t(380) = 5.74, p < .001. The effect size d = 0.85 for the condition in which the target

cause’s causal latency was higher than the one of the alternative cause (M = 0.39,

SD = 0.22, Md = 0.40, 95%CI = 0.04 when causal power was 0.40 vs. M = 0.23,

SD = 0.20, Md = 0.20, 95%CI = 0.04 when causal power was 0.93), and

t(380) = 6.20, p < .001, d = 1.05 for the condition in which the target cause’s causal

latency was lower than the one of the alternative cause (M = 0.62, SD = 0.22,

Md = 0.70, 95%CI = 0.04 when causal power was 0.40 vs. M = 0.81, SD = 0.17,

Md = 0.80, 95%CI = 0.03 when causal power was 0.93). As predicted by the new

model, there was no main effect of causal power, F (1, 380) < 1.Furthermore, it can also

be seen that the effects were overall larger than the ones we observed in Experiment 3,

which indicates that subjects were indeed sensitive to the causal power difference. In

Experiment 3, the size of the interaction effect was d = 0.32, whereas it was d = .87 in

the present study.

The ratings for the causal latency question that subjects made in the two different
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Figure 15 . Results (bars represent means; error bars denote 95% bootstrapped CIs; red

points show jittered individual ratings; black points show medians) for the

causal-latency question that we asked in the end of Exp. 4. The x-axis shows the

respective causal-power conditions. High ratings are associated with the cause with the

lower causal latency.

causal power conditions are summarized in Fig. 15. The figure shows the results

averaged over the different balancing factors. High ratings are associated with the cause

with the lower causal latency (i.e., the one that operated quicker). First of all, it can be

seen that ratings were high in both conditions, confirming that subject correctly

identified the cause that had the smaller causal latency. Yet, it can also be seen that

the causal power difference led to a small distortion. When the causal power of the two

causes was high, subjects were more likely to give a rating associated with the cause

with the lower causal latency (M = 8.77, SD = 1.69) than when the causal power of

the causes was low (M = 7.64, SD = 2.54). Subjects’ causal latency ratings were used

to estimate the α parameter in our model (0.877 and 1− 0.877 for high vs. low alpha in

the high-causal power case; 0.764 and 1− 0.764 for high vs. low alpha in the low-power

case) to see how this would change the predictions for the singular causation ratings.

The model predictions based on subjects’ causal latency ratings are depicted in the

third panel in Fig. 14. It can be seen that this model explains subjects’ singular

causation judgments even better than the model that relies on the objective parameter
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values. The results of this experiment demonstrate again the validity of the new model.

9 General Discussion

The present paper argues for the view that assessing which of a set of potential

cause factors actually caused a target effect on a singular occasion requires the

integration of two different types of information: One relevant type of information is the

causal strength of the potential causes: If an outcome can be explained by either of two

potential causes, then the outcome is more likely due to the stronger cause. The

standard causal power theory of attribution by Cheng and Novick (2005) provides a

formal analysis of how the causal strengths of the potential causes should be weighed

against each other to reach a decision. Considering only causal strength is not enough,

though. The second crucial type of information that needs to be incorporated is

information about temporal relations. Temporal information is relevant because it

would otherwise be impossible to distinguish between situations in which a sufficiently

strong cause actually succeeds in bringing about the effect and situations in which a

likewise sufficient competitor managed to preempt the target cause. We here proposed a

formal model that incorporates the probability of preemption to estimate how likely it

is that the target cause actually caused the target outcome. We showed that the

probability of preemption can be obtained by the combination of causal strength along

with temporal information about the potential causes’ onset times and their causal

latencies. The results of the reported experiments demonstrate that the new model

makes accurate predictions of subjects’ singular causation judgments. Interestingly, the

model was accurate even in the computationally quite demanding situations where all

its parameters were probabilistic (Experiments 3 and 4).

9.1 Limitations and avenues for future studies

9.1.1 Modeling other types of situations. The type of test situations we

investigated represents only a subset of possible situations. For example, one

noteworthy characteristic of our test scenarios was that all potential causes of the effect

were actually observed. In most real-world situations, however, reasoners observe only a
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subset of the potential causes and thus are typically confronted with uncertainty

concerning the presence of further alternative causes. Although we have not considered

situations with unobserved background causes here, the new model can be applied to

such situations, too. In situations in which only the target cause is observed while

alternative causes remain unobserved, information about the temporal distribution of

the effect in the absence of the target cause needs to be considered to estimate α. As

Bramley et al. (2018) have shown in their recent article on general causal structure

induction, the temporal distribution of the effect in the target cause’s absence can be

modeled with exponential functions. The observed causal-delay distribution in the

presence of the target cause would then be a mixture of the particular gamma

distribution of the target cause’s causal latency and the exponential background

distribution. The estimation of the α parameter would require as a first step the

decomposition of the mixed distribution into its elements. Thereafter, the same

algorithm that we used to estimate α in the present studies can be applied. We plan to

test such situations in future experiments and expect similar findings: target causes

with a small causal latency should more likely be viewed as singular causes than

otherwise identical causes with higher causal latency, as the latter are more likely to be

intercepted by unobserved background causes (see Lagnado & Speekenbrink, 2010).

Furthermore, the present studies tested only static target situations, as subjects

were asked to make singular causation judgments based on previously acquired

knowledge about strength, delays and onsets. The structure of the target situation thus

resembled a classical crime scenario, in which the detective enters the scenery and tries

to identify the perpetrator after all events had unfolded. We focused on this type of test

situation because it is the standard situation analyzed by the standard causal power

model of attribution (Cheng & Novick, 2005) and because it is the type of situation

that was tested in previous related studies (e.g., Holyoak et al., 2010, or also Meder et

al., 2014, who tested diagnostic inferences). In many real-life situations, however,

singular causation queries arise in dynamic contexts. A crucial feature of dynamic test

cases is that the onsets and delays are experienced online prior to responding to a
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singular causation query. This way the interaction between prior beliefs about causal

strength and temporal parameters could be compared to the actually observed sequence

of events. Imagine a target cause with an average causal strength of wC = 0.90 and an

expected causal delay of 20 minutes (e.g., a dose of ibuprofen). Now subjects observe

that the relief from pain occurs after two hours, however. The unexpected long delay

may suggest that the causal strength of the drug was zero on this occasion, and

therefore should weaken the belief that the drug was the singular cause of the effect.

9.1.2 The role of causal mechanisms. Another question that we did not

address in the present paper concerns the role of causal mechanism information in the

assessment of singular causation. After all, causal mechanism information has been

identified as an important type of information in causal reasoning (see Johnson & Ahn,

2017, for an overview). Different studies have shown that reasoners regard mechanism

information as particularly relevant when making causal attributions (Ahn, Kalish,

Medin, & Gelman, 1995; Johnson & Keil, 2018). Likewise, in a recent article the

philosopher Nancy Cartwright (2017) has listed mechanistic information among the

factors that help assess singular causation.

We think that the influence of mechanism information can be modeled by the

addition of variables to our model. Causal mechanisms can be represented by additional

variables interpolated between the cause and the effect factors, thereby turning a

previously direct causal connection (e.g., C → E ← A) into an indirect one

(C →MC → E ←MA ← A). Consider our standard scenario in which a reasoner

knows that C, A, and E occurred on a singular occasion and they are asked to respond

to the query how confident they are that c instead of a caused e on this occasion.

Knowledge about the status of the mechanism variable MA connecting A and E would

be helpful here because knowing the status of MA constrains a’s actual causal power on

the target occasion. If the causal chain A→MA → E honors the causal Markov

condition and if there is only one “mechanism path” leading from A to E (on which MA

lies), the absence of MA (¬mA) implies that a had a causal power of zero in this case

and can therefore be ruled out as a singular cause of e. Consequently, whenever c is the
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only remaining potential cause of the effect, one can safely conclude that e was caused

by c. This normative reasoning strategy has been called “eliminative abduction” or

“Holmesian inference” in the literature (Bird, 2010) and our model is in accordance

with it. To see this, consider how Eq. 5 would have to be modified to capture such a

situation. What would change is that another conditional element would have to be

added to P (c→ e|c, a, e) turning this expression into P (c→ e|c, a,¬mA, e). On the

right-hand side of the equation, the unconditional causal power of A, wA, would have to

be substituted by A’s power conditional on the absence of MA, wA|¬MA
. Assuming that

the causal Markov condition holds and that there is only a single mechanism path

connecting A and E, wA|¬MA
would amount to zero and P (c→ e|c, a,¬mA, e) would

reduce to wC

wC
= 1. Of course, even in cases in which A produces E via multiple

mechanism paths, assessing the status of MA can be helpful. If a situation can be

conditionalized on the absence of MA, this should increase P (c→ e|c, a,¬mA, e), as the

causal Markov condition implies that wA|¬MA
< wA.

Causal mechanism information might not only constrain the causal strength

parameters in the model but also the parameter α. The reason for this is that a causal

mechanism connecting a target cause and a target effect might involve multiple causal

paths which might differ not only with respect to their causal powers but also with

respect to their causal latencies. Take the example of a coroner who wants to find out

whether a victim displaying an abdominal gunshot wound actually died because of the

gunshot. The causal strength with which bullets kill their victims is surely quite high

on average, but also fairly variable. Similarly, bullets typically bring death to their

victims relatively quickly, but not always. Depending on the organs that are damaged,

both the probability of dying from a gunshot and the latency can be high or low. A

case in which the bullet took a straight path to the victim’s heart will probably lead to

higher confidence in a singular causal link between gunshot and death than a case in

which the bullet left all organs intact. Bullets that stop their victims’ hearts are not

only more effective, they also bring death so quickly that there is less room for

alternative causes to strike (e.g., an assassin might first have administered a lethal dose
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of poison but then decided to shoot the victim). Manipulating and testing the influence

of causal mechanism information on singular causation judgments will be an interesting

avenue for future studies.

9.1.3 Singular events and their corresponding types. The account we

are presenting here commits to the philosophical point of view that singular causation is

not directly observable, and that the corresponding judgments therefore need to involve

general-level causal knowledge gained from multiple observations (cf. Danks, 2017).

Here the problem arises that a suitable type-level causal variable or reference class need

to be chosen. However, every singular case can be associated with infinitely many

type-level variables. In the case of Peter’s smoking as a potential singular cause of his

lung cancer, Peter might be classified as an instantiation of the type smoker or more

specifically as an instantiation of the type smoker who smokes more than ten cigarettes

but less than a whole pack per day. An important problem here is that causal strength

estimates in most cases vary depending on the chosen reference class (see Cartwright,

1989). In the present research we have not studied the problem of how reasoners select

reference classes. This is an interesting question for future studies, however. A plausible

hypothesis one could test is that people will prefer to associate singular cases with a

reference class that is maximally homogeneous. Although this hypothesis is a plausible

first pass, it surely needs qualification. For example, narrowing the reference class too

much so that the target case represents its only member would also not work as it

would render the reference class useless.

9.2 Conclusion

Assessing whether two singular events c and e were actually causally connected or

whether their co-occurrence is a coincidence requires the application of general causal

background knowledge about the strength with which the potential cause C tends to

generate the effect relative to possible alternative cause A. This is not enough however

to respond to a singular causation query because not even deterministic causes are

necessarily causal on a singular occasion. A simultaneous sufficient alternative cause
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might have preempted the target cause in it efficacy. To account for this possibility,

causal strength information needs to be combined with temporal information about the

potential causes. Two relevant types of temporal information are onset differences

between the potential causes and causal latencies. Our new generalized model of

singular causation judgments combines causal power and temporal information to

compute the probability with which a target cause was preempted by an alternative

cause. Four experiments demonstrated that reasoners integrate and apply causal

strength and temporal knowledge as predicted by our new model.
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Abstract

Queries about singular causation face two problems: It needs
to be decided whether the two observed events are instanti-
ations of a generic cause-effect relation. Second, causation
needs to be distinguished from coincidence. We propose a
computational model that addresses both questions. It accesses
generic causal knowledge either on the individual or the group
level. Moreover, the model considers the possibility of a co-
incidence by adopting Cheng and Novick’s (2005) power PC
measure of causal responsibility. This measure delivers the
conditional probability that a cause is causally responsible for
an effect given that both events have occurred. To take uncer-
tainty about both the causal structure and the parameters into
account we embedded the causal responsibility measure within
the structure induction (SI) model developed by Meder et al.
(2014). We report the results of three experiments that show
that the SI model better captures the data than the power PC
model.

Keywords: causal inference, generic causation, singular cau-
sation, actual causation, causal responsibility, causal attribu-
tion, Bayesian modeling

Imagine that you wake up one morning and recognize that
you are haunted by a mean twinge in your head. You also
know that you drank too many glasses of wine last night.
Now the question arises whether your behavior last evening
is causally responsible for your headache this morning. This
causal query targets a singular instance in which one event
at a specific spatio-temporal location may have caused an-
other event that followed. The general problem with singular
causal queries is that a co-occurrence of the particular events
by itself does not guarantee causation. It may just be a coin-
cidence. How confident can you be that this singular case of
having drunk wine is the cause of your headache?

One important source that should influence our confidence
is past knowledge about the contingency between drinking
wine and headache. This is generic causal knowledge. It
could either refer to cases of presence and absence of drinking
and headache in an observed sample of people, or, even better
with respect to the example given above, to a sample of these
events in your life. The contingency in your life provides the
best estimate for a generic causal relation between drinking
and headache in your body.

However, knowing that there is a generic causal relation
does not necessarily imply that a singular co-occurrence of
the target events is causal. Unless the generic relation is deter-
ministic, the co-occurrence may still be a coincidence. Thus,
our causal judgment about singular causation must take this
possibility into account.

Psychological research on causal inference adheres to two
different theoretical frameworks to characterize the reasoning
processes (see Waldmann, in press; Waldmann & Hagmayer,

2013; Waldmann & Mayrhofer, in press). One approach as-
sumes that causal knowledge is grounded in knowledge about
causal dependencies gleaned from observed contingencies.
According to this approach, causes are difference makers that
raise or lower the probability of an effect (e.g., Cheng, 1997;
Griffiths & Tenenbaum, 2005; Meder, Mayrhofer, & Wald-
mann, 2014).

A different approach assumes that causal knowledge is
based on a search for mechanisms and processes linking
causes and effects (e.g., Ahn, Kalish, Medin, & Gelman,
1995). The two approaches need not be incompatible. Of-
ten mechanism knowledge is based on generic information
about causal chains. Specific mechanisms are then simply
instantiations of generic chain knowledge.

Mechanism knowledge is often not available. But even in
cases in which information about intervening variables of a
causal chain is in fact accessible, the question arises again
how we should distinguish causation from coincidence. The
joint occurrence of all elements of a chain certainly makes
the possibility of a coincidence extremely unlikely, but it is
in principle still a possibility. Thus, the general problem of
how we should apply generic knowledge to singular cases still
needs to be addressed, regardless of whether we solve this
problem for a direct causal link or a causal chain.

In the present paper, we investigated how people exploit
generic causal information when estimating singular causa-
tion. We here focus on cases for which it is known that both
the cause event and the effect event are present, but the ques-
tion needs to be answered how much confidence we can have
that the co-occurrence is due to causation and not a coinci-
dence.

Cheng and Novick (2005) have proposed a measure of
causal responsibility that helps to answer this question. The
measure is based on the assumptions of power PC the-
ory (Cheng, 1997). It delivers the conditional probability
that a cause event c is causally responsible for an effect
event e given that a reasoner knows that both have occurred,
P(c→ e|c,e). We think that this quantity underlies judgments
of singular causation when only generic information is avail-
able. One shortcoming of this measure is that it does not in-
corporate the reasoners’ uncertainty concerning the underly-
ing causal structure and the corresponding parameters (see
Griffiths & Tenenbaum, 2005). Therefore, Holyoak, Lee, and
Lu (2010) have proposed a causal responsibility measure that
also takes parameter uncertainty into account. We go one step
further here, and test a model of causal responsibility that is
sensitive to both parameter uncertainty and uncertainty about
the existence of the causal link between factors C and E. This
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model is based on the structure induction (SI) model of di-
agnostic reasoning developed by Meder et al. (2014). We
present three experiments in which we empirically tested the
power PC theory of causal responsibility against our SI model
of singular causation.

The Power PC Model of Causal Responsibility
Causal power in Cheng’s (1997) theory can be understood as
the probability that the target cause brings about the effect
in the absence of all alternative causes of the effect. Fig. 1
(right) shows the basic causal model assumed by the power
PC theory. The default assumption is that the target effect E
can be independently produced by either the observed cause
C with causal power (or strength) wc or by alternative unob-
served causes A with the power (or strength) wa. It is further
assumed that C and A occur independently and do not inter-
act. Thus, C and A combine through a noisy-OR gate (see
Griffiths & Tenenbaum, 2005; Pearl, 1988).

Based on the power PC framework, Cheng and Novick
(2005) developed a measure of causal responsibility. For-
mally, causal responsibility is the proportion of occurrences
of the effect due to the target cause C. Cheng and Novick
(2005) presented formalizations of different kinds of causal
responsibility. Here we are interested in how to answer the
question whether an observed event c was causally respon-
sible for an observed event e in cases in which both c and e
were observed. Under the default assumptions of power PC
theory, Cheng and Novick (2005) showed that this quantity is
given by

P(c→ e|c,e) = P(c) ·wc

P(c,e)
=

P(c) ·wc

P(c) ·P(e|c) =
wc

P(e|c) , (1)

where P(c) equals bc in Fig. 1, which denotes the base rate of
C, and P(c,e) denotes the joint probability of cause and ef-
fect. Since P(c,e) can be rewritten as the product of P(c) and
the predictive probability P(e|c), causal responsibility given
the joint occurrence of c and e equals the causal power of c
divided by the predictive probability of e given c.

The power PC theory only considers the model S1 depicted
in Fig. 1 (right) and uses maximum likelihood estimates for
the parameters. It does not take into account uncertainty
about the size of the parameters, nor about the causal struc-
ture (see Griffiths & Tenenbaum, 2005). Thus, it does not
consider the possibility, depicted as S0 in Fig. 1, that there is
no causal arrow from C to E, meaning that all co-occurrences
are due to coincidence.

A consequence of maximum likelihood estimates is that
the theory predicts maximal values of causal responsibil-
ity for any contingency where the target cause is necessary
(i.e., a table with an empty C cell) no matter how rarely co-
occurrences of cause and effect are. Consider the two exam-
ples of such cases depicted in Fig. 2. In the left table, the
effect has only occurred four times when the cause event was
present. In contrast, in the right table the effect occurred six-
teen times when the cause event was present. By applying the

equations, one can see that the prediction of maximal respon-
sibility is a consequence of wc being equal to P(e|c) for any
table with an empty C cell.

𝑤𝐶

𝑤𝐴

𝑏𝐶

(𝑆1)

𝑤𝐴

𝑏𝐶

(𝑆0)

Figure 1: The two causal structures in the structure induction
model. In S0, no causal relationship exists between C and E.
In S1, C and E are causally connected. Node A represents
unobservable background causes of E. The parameter bc de-
notes the base rate of the cause, and wc and wa the causal
powers of C and A, respectively.

The Structure Induction Model of Singular
Causation

Contrary to the power PC theory, the structure induction (SI)
model assumes that reasoners might be uncertain about both
the underlying causal model and the parameters (Meder et
al., 2014). Originally, the model was developed to model di-
agnostic inferences. Here, instead, we use the framework to
model judgments about singular causation. Our key claim is
that subjects assess singular causation by estimating causal
responsibility within the SI model.

Causal queries about simple causal models with a single
cause and a single effect are modelled by the SI theory as a
Bayesian inference problem over the two mutually exclusive
causal structures shown in Fig. 1 (see also Griffiths & Tenen-
baum, 2005). The model formalizes the assumption that rea-
soners are uncertain about which of the two models underlies
the data; they are also uncertain about the size of the param-
eters. We will briefly summarize the different computational
steps of the model.

Parameter Estimation
In light of the possibility that either S0 or S1 might underlie
the data, the model estimates the base rate and power param-
eters bc, wc, and wa, separately for each causal structure (see
Fig. 1). To express uncertainty, distributions of the param-
eters, rather than maximum likelihood point estimates, are
inferred. According to Bayes’ rule, the posterior probability
distributions for the parameters of each model given the data,
P(w|D), is proportional to the likelihood of the data given the
set of parameters w, weighted by the prior probability of the
structure:

P(w|D) ∝ P(D|w) ·P(w) (2)

P(D|w) denotes the likelihood of the data given the param-
eter values for bc, wc, and wa. P(w) represents the prior joint
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probability of the parameters which we set to flat, uninforma-
tive Beta(1, 1) distributions.

Structure Estimation
The SI model separately derives the posterior probabilities
for each causal structure. Applying Bayes’ rule, the posterior
probability for a causal structure is proportional to the likeli-
hood of the data given the causal structure, weighted by the
structure’s prior probability:

P(Si|D) ∝ P(D|Si) ·P(Si) (3)

P(D|Si) denotes the likelihood of the data given a partic-
ular structure, which is the integral over the likelihood func-
tion of the parameter values under the particular structure.
P(Si) represents the prior probability of the structures. The
model initially assumes that both structures have equal pri-
ors, i.e., P(Si) = 1/2. When data are available, the posterior
for a causal structure varies systematically with the observed
contingency: the higher the contingency, the more likely S1
becomes.

Causal Responsibility for Each Structure
Having estimated the parameters and the posteriors of the
structures, the model computes causal responsibility sepa-
rately for each parametrized structure using Equation 1. Un-
der a noisy OR-parametrization Equation 1 can be rewritten
as

P(c→ e|c,e) = wc

P(e|c) =
wc

wc +wa−wc ·wa
. (4)

According to S0, there is no causal connection between C
and E, and any co-occurrences of c and e are coincidences.
Hence, P(c→ e|c,e) = 0 for S0. For S1, Equation 4 is ap-
plied. The estimation of causal responsibility is then derived
by integrating over the parameter values.

Deriving a Single Value
The final output of the model is a single estimate of causal
responsibility through integrating out the causal structures by
summing over the derived values of P(c→ e|c,e;Si) for each
structure weighted by each structure’s posterior probability:

P(c→ e|c,e;D) = ∑
i

P(c→ e|c,e;Si) ·P(Si|D). (5)

The incorporation of structure and parameter uncertainty
by the SI model leads to systematic deviations from the pre-
dictions of the power PC model (see Fig. 2). For an illustra-
tion, consider the left contingency table depicted in (a). Al-
though the effect never occurred in the absence of the cause,
only four co-occurrences are observed. This relatively low
frequency of co-occurrence is the reason for the relatively
high probability of S0. Hence, based on this information, it
seems reasonable to be cautious about the causal relation of a
singular co-occurrence. By contrast, consider the right table

in (a). Here again, the effect never occurred in the absence
of C but it occurred frequently in its presence. In this case,
the data suggest a strong generic causal relationship between
the factors. Now, when presented with a singular case, rel-
atively high confidence in a case of actual causation is to be
expected.

Experiment 1
The experiment tests the SI model against the power PC the-
ory as an account of how subjects answer singular causal
queries. Fig. 2 shows the predictions of the models for the
two data sets that we used. The power PC model predicts
invariance whereas our SI model of singular causation pre-
dicts that judgments should vary. This is because the likeli-
hood that the observed data pattern was produced by structure
S1 varied between the two different contingencies. We also
wanted to address a second question: Do subjects differen-
tiate between generic and singular queries? To test this, we
compared a generic with a singular query in the experiment.

Design, Materials, and Procedure
Sixty-one subjects completed this online experiment for mon-
etary compensation. Fifty-six subjects (mean age = 29.16
years, SD = 8.4 years, 28 were female) passed our embed-
ded attention check and were included in the analyses. The
contingencies (see Fig. 2) were varied between subjects.

We used a fictitious story of a single sea devil living in an
aquarium. Our subjects were asked to assume they were biol-
ogists being interested in whether noise causes the fish’s an-
tenna to flash. Subjects read they should imagine having run
a single-case study with one fish to test this hypothesis. We
then instructed our participants that they will see the results
of this study. They read that the fish was placed in front of a
loudspeaker twenty times and that the loudspeaker was off at
first and activated subsequently to assess the fish’s reaction.

0

0.5

1

Table 1 Table 2

Power PC Model
SI Model
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Figure 2: Predictions of the power PC and the SI model of
singular causation are depicted in (a), the results in (b). Dark
and light bars show means (95% CI) of the generic and sin-
gular causation ratings, respectively.
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Having read the instruction, subjects saw the results of the
observations arranged in a table with four columns and five
rows. Below each depiction of the fish, located in front of
a tiny loudspeaker, a little yellow scrip was placed that indi-
cated the respective trial number. The initial screen showed
the state of the fish as the loudspeaker was off (¬ c). Next,
we presented the results as the loudspeaker was activated (c),
symbolized by tiny sound waves. A yellow color of the fish’s
flash bulb indicated the flashing of the antenna.

To test intuitions about generic causation we asked sub-
jects how appropriate it is to say (on a rating scale from 0
to 100) that noise is a cause of the flashing of the sea devil’s
antenna. The corresponding question targeting singular cau-
sation asked subjects to focus on the first trial of the obser-
vations in which the fish’s antenna had flashed upon noise
exposure. Subjects were requested to indicate (again using
a scale ranging from 0 to 100) how appropriate it is to say
that the noise had caused the flashing of the fish’s antenna
in this particular trial. Additionally, we also asked subjects
about a trial in which the antenna did not flash upon noise
exposure. Furthermore, we asked them to make a predictive
judgment concerning a hypothetical new trial. Here, we asked
how likely it is that the fish would flash its antenna again.

Results and Discussion
The results can be seen in Table 1 and Fig. 2. Fig. 2 shows
that participants judged the generic-level causal relationship
between noise and antenna flashing differently for the two
contingencies. On average, ratings were higher in the high
contingency condition compared to the low contingency con-
dition. As predicted by the SI model, the singular cause rat-
ings were also different in the two conditions.

A 2 (contingency)× 4 (type of rating) mixed ANOVA with
the second factor being varied within subject yielded a signifi-
cant main effect of contingency, F(1,54) = 82.00, p < .001, a
significant main effect of rating, F(3,162) = 53.13, p < .001,
and also a significant interaction between contingency × rat-
ing, F(3,162) = 15.74, p < .001. A planned contrast com-
paring the singular causation ratings was also significant,
t(54) = 2.55, p = .01, confirming that the ratings were higher
in the high contingency condition. This difference is not pre-
dicted by the power PC model but it is predicted by the SI
model.

An interaction contrast comparing the difference be-
tween the generic and the singular ratings was significant,

Table 1. Mean ratings (SE of the mean) obtained for the dif-
ferent questions in the experiment.

condition

contingency: low contingency: high
generic causation 22.40 (3.43) 73.55 (3.43)
singular causation (e, c) 54.00 (7.12) 75.48 (4.95)
singular causation (e, ¬c) 10.40 (3.58) 19.03 (5.36)
predictive probability 20.40 (3.13) 76.13 (2.48)

t(54) = 3.60, p < .001. As Fig. 2 shows, this finding is
due to the fact that the mean rating obtained for the singu-
lar causation question was higher than the generic causation
rating in the low contingency condition. While this indicates
that participants indeed conceptualized the two causal queries
differently it seems that subjects answered the generic ques-
tion with a causal strength rather than a structure estimate.
This may also explain why there was no difference between
generic and the singular ratings in the high contingency con-
dition. As can be seen in Table 1, the additional ratings for
the predictive probability were in line with the empirical pre-
dictive probability obtained in the contingency tables. Inter-
estingly, singular ratings differed from zero in both groups for
the trial in which the fish did not show a flashed antenna after
noise exposure. These ratings were also higher in the high
contingency condition than in the low contingency condi-
tion. This seems to reflect an unpredicted influence of generic
knowledge, but it should be noted that the ratings were the
lowest in the set.

In sum, the results favor our SI model of singular causation.
We obtained the predicted slope of the ratings that contradicts
the power PC model predictions. Furthermore, the results
obtained in the low contingency condition show that subjects
differentiated between a generic and a singular causal query.

Experiment 2
In Experiment 1 we used data sets in which the cause ap-
peared necessary for the effect. To test our model for data
sets in which all event types exist, we used in the present ex-
periment the three contingency tables shown in Fig. 3. Again,
the power PC model predicts invariance. This time it pre-
dicts values of 0.83, whereas the SI model predicts a slope.
For this experiment, we also wanted to compare the SI model
with a Bayesian variant of the power PC model (Holyoak et
al., 2010) that takes into account parameter uncertainty but
not structure uncertainty. For this model, we also used un-
informative priors over the parameters. As can be seen, the
predictions of this model are very similar to the predictions
of the power PC model but slightly lower on average.

A second change was that the generic information did not
refer to a time series of trials involving a single individual, but
a sample of different individuals. Thus, we were interested in
testing how subjects use generic information about a sample
of different fish to respond to a causal query about a singular
case.

Design, Materials, and Procedure
Thirty-eight participants (mean age = 31.23 years, SD = 8.90
years, 14 were female) completed this online experiment. The
data sets were presented to each subject.

In this experiment, all forty observations were shown in
random order on the screen in a table with five columns and
eight rows. Subjects should assume they were biologists who
had studied the influence of chemicals on gene mutations in
populations of sea devils. They were instructed that they will
see the results of these studies. Subjects also read that the
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Figure 3: Model predictions and results (95% CI) for the dif-
ferent data sets used in Experiment 2.

chemical had been injected in half of the sample in each study
and that the whole sample had later been tested for mutation.
We used differently colored circles (red vs. blue) to indicate
the presence vs. absence of gene mutations; a black margin
around circles indicated chemical treatment. Finally, we in-
structed our participants that their task will be to provide a
judgment concerning a single case.

For each data set, participants were asked to imagine a new
individual fish which had ingested the chemical and also had
the mutation. This time, we asked for the probability (on a
scale from 0 to 100) that the chemical caused the gene muta-
tion in this single case.

Results and Discussion
As can be seen in Fig. 3, ratings differed across the three data
sets. A repeated-measure ANOVA with “data set” as within-
subject factor was significant, F(2,74) = 4.19, p = .02. This
main effect was due to the ratings for the first data set be-
ing different from those for the second and the third data set,
t(37) = 2.77, p < .01. The ratings for the second and the
third data set did not differ, t(37) = 0.39. The dampening of
the upward trend across the three data sets is consistent with
our SI model, although the model predicts a slight downward
trend between the second and third data set. In contrast to
what we observed in the first experiment, the singular causa-
tion ratings for all three data sets were lower than predicted
by the SI model. One explanation for this finding may be that
the type of data presentation that we used made it hard for
participants to grasp the contingencies precisely, because all
observations were presented on the screen in random order
and also in combination with abstract symbols.

In sum, the results again favor our SI model of singular
causation over the power PC model and also over a Bayesian
variant of the power PC model as an account of how sub-
jects respond to causal queries about singular causation. The
present experiment further demonstrates that not only time
series data but also data about samples of different individu-
als are used to derive a prediction for a singular case.

Experiment 3
In the first two experiments we dissociated the SI model of
singular causation from the power PC model by using data
sets for which the power PC model predicts invariance. To
obtain additional evidence for the validity of the SI model
we conducted an experiment with data sets for which the SI
model predicts invariance but the power PC model does not.
We obtained invariant predictions of the SI model by coun-
teracting a slight decrease in contingency across the two con-
trasted data sets (see Fig. 4) with an increase of sample size.

Apart from singular causal inferences, we also tested
whether participants would infer a higher probability for the
existence of a generic causal relationship (i.e., for S1) for the
larger sample (Fig. 4, right), which is predicted by the SI
model for generic queries. Our model predicts an interaction
effect between the type of question and data set.

Design, Materials, and Procedure
All subjects saw both data sets. The type of question (confi-
dence in generic vs. singular causation) was manipulated be-
tween subjects. 101 subjects participated in the online study
(mean age = 31.40 years, SD = 11.10 years, 43 were female)
and provided valid data.

Participants read that they should imagine to be biologists
who tested the influence of the chemical “Acrinazyl” on the
expression of the gene ASPM in mice in an experiment using
a sample of twenty test animals. They were instructed that
one half of the sample served as a control group. We pre-
sented the two halves of the sample separately on the same
screen. Different colors indicated the status of ASPM. In the
generic condition, we asked subjects to indicate (on a slider
ranging from 0 to 100) how confident they are that the chemi-
cal does indeed raise the probability of ASPM expression. We
were hoping that this test question would less ambiguously
refer to generic causal relations than the one we used in Ex-
periment 1. In the singular condition, subjects were instructed
that they should imagine having picked out a single mouse
from the Acrinazyl group with ASPM being expressed. They
were asked how much confidence they had that it was indeed
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Figure 4: Model predictions and results (95% CI) for the dif-
ferent data sets used in Experiment 3.
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the chemical that caused the gene expression in this particu-
lar mouse. Subjects indicated their confidence using a slider
ranging from 0 to 100.

After participants had provided these ratings they read that
they had conducted a second experiment with a larger sample
size. We then showed them the results of the second study
and asked them to re-assess their ratings in light of the results
of this second study.

Results and Discussion
Fig. 4 shows that the singular ratings are well captured by the
SI model. Moreover, as predicted by the SI model, the mean
ratings for the generic causal question increased between data
sets (M = 63.54, SE = 1.00; M = 68.63, SE = 1.00). A
mixed ANOVA confirmed our predictions with a significant
main effect for causal question, F(1,99) = 7.42, p < .01, and
a significant interaction between question type and data set,
F(1,99) = 6.60, p = .02. Furthermore, there was no differ-
ence between the singular causal ratings, t(46) = 1.34.

Overall, Experiment 3 was in line with the predictions
of our SI model of singular causation. We also demon-
strated again that subjects treat singular and generic causation
queries differently.

General Discussion
We tested a new model of how people respond to queries
about singular causation. Simply observing two consecutive
events at a specific space-time location does not suffice. The
question needs to be answered whether this co-occurrence
manifests a causal relation or merely a coincidence. We ar-
gued that one relevant source of knowledge are generic causal
relations. However, knowing, for example, that smoking gen-
erally increases the risk of lung cancer does not imply that
a specific cancer patient who has smoked throughout her life
has actually contracted the disease because of this risk factor.
A coincidence is still possible.

One strategy that has been suggested in the literature is
that judgments about singular causation should rely on un-
veiling causal mechanisms: observations of tar in the lung
and genetic alterations in a cancer patient would strengthen
the claim of singular causation. However, observing chains
of singular events only helps with the question of singular
causation if there is reason to assume that they are causally
related. Thus, generic knowledge is necessary here as well
(see also Danks, in press).

Since studying chain-like mechanisms does not fully solve
the problem of how generic and singular causation are related,
we here began with the simplest case with one cause and one
effect event. In three experiments we showed that subjects
used contingency information from both time series data of
an individual and from group data when making judgments
about singular causation.

We also showed that subjects differentiated between
generic and singular causation. The responses to queries
about singular causation were best explained by a variant of
the SI model from Meder et al. (2014) that computes an esti-

mate of causal responsibility (Cheng & Novick, 2005). Un-
like its main competitors, the SI model is sensitive to the un-
certainty of both the causal structures and their parameters.

Our research is just a first step. We have compared the SI
model with two power PC models. However, we kept the pri-
ors uninformative and did not model different types of priors
(e.g., Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008).

Another question that we want to address in future research
is how subjects assess generic causal relations in time se-
ries versus group samples. Finally, it would be interesting
to broaden the scope of the SI model by applying it to more
complex causal models, such as causal chains, to gain insights
in the important role that mechanism knowledge plays in sin-
gular causal inferences.
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Abstract

Causal queries about singular cases are ubiquitous, yet the
question of how we assess whether a particular outcome was
actually caused by a specific potential cause turns out to be
difficult to answer. Relying on the causal power approach,
Cheng and Novick (2005) proposed a model of causal attribu-
tion intended to help answering this question. We challenge
this model, both conceptually and empirically. The central
problem of this model is that it treats the presence of sufficient
causes as necessarily causal in singular causation, and thus ne-
glects that causes can be preempted in their efficacy. Also, the
model does not take into account that reasoners incorporate
uncertainty about the underlying causal structure and strength
of causes when making causal inferences. We propose a new
measure of causal attribution and embed it into our structure in-
duction model of singular causation (SISC). Two experiments
support the model.

Keywords: singular causation; causal attribution; preemption;
causal reasoning; Bayesian modeling; computational modeling

Introduction
Most people hold the belief that smoking causes lung can-

cer. Now, imagine that you learn that Peter, a passionate
smoker, has contracted lung cancer. How strongly would you
be willing to say that it was Peter’s smoking that was causally
responsible for his disease?

This example illustrates a scenario in which we seek an an-
swer to a causal query about a singular case. Queries about
singular causation are prevalent in everyday life and profes-
sional contexts, such as the law or medicine. How do peo-
ple derive causal judgments about singular cases? Of course,
the mere fact that two factors C and E are generally causally
connected (e.g., smoking often causing lung cancer) does not
necessarily imply that a singular or token co-occurrence of
these events (e.g., Peter’s smoking and his lung cancer) man-
ifests a causal relationship – a singular co-occurrence might
be a mere coincidence. On the other hand, as causality is not
directly observable in the world, to what else than our general
causal knowledge could we turn to obtain answers?

We are going to present a theory that builds on the idea, first
formalized by Cheng and Novick (2005), that the notion of
unobservable causal powers (Cheng, 1997) plays an essential
role in singular causation judgments. Yet, we will demon-
strate that Cheng and Novick’s (2005) power PC model of
causal attribution (CN model) makes assumptions that are
not always plausible. Generally, the CN model is intended
to provide a normative answer to the question how we can
determine whether an observed outcome was actually caused
by a potential cause factor. For example, for cases like the one
above about Peter in which a potential cause c and an effect
e have been observed, the CN model delivers the probability

P(c→ e|c,e) with the arrow denoting a causal relation. We
argue that the key problem of the model is that it treats target
causes as singular causes whenever they are sufficient for the
effect in a specific situation. This appears to be at first sight
a reasonable assumption, yet it ignores that the exact points
in time at which different causes exert their powers play an
important role in singular causation judgments (see Danks,
2017): crucially, sufficient causal powers can be preempted
by others, and in such cases they should not be held causally
responsible for the occurrence of the outcome. We will argue
that preemption of causes by background factors frequently
occurs in singular causation scenarios, and therefore presents
a problem for the CN model.

Another problem of the CN model is that it does not take
into account uncertainty about both the underlying causal
structure and the causal parameters (e.g., the size of the causal
powers). To incorporate uncertainty about the causal parame-
ters, Holyoak, Lee, and Lu (2010) have proposed a Bayesian
version of the CN model that uses probability distributions
over the parameters instead of point estimates. However, their
model also neglects uncertainty about the underlying causal
structure. Both sources of uncertainty have been demon-
strated to influence causal learning and reasoning (Griffiths &
Tenenbaum, 2005; Meder, Mayrhofer, & Waldmann, 2014).
For this reason, Stephan and Waldmann (2016) proposed the
structure induction model of singular causation (SISC) that
incorporates both types of uncertainty. Although three exper-
iments (Stephan & Waldmann, 2016) showed that SISC better
accounted for the results than the standard power PC model
of causal attribution, one shortcoming of the initial version
of SISC was that it used the CN conceptualization of causal
attribution that we are going to criticize in the present paper.

We will start with a theoretical section in which we defend
a new measure of causal attribution as a component of SISC
that is sensitive to preemption. We then present the results
of two experiments. Experiment 1a confirmed that singular
causation judgments deviate systematically from the predic-
tions of the CN model in line with our revised causal attribu-
tion equation. Experiment 1b assessed participants’ notion of
preemption. In Experiment 2 we used a larger set of contin-
gencies to compare the revised SISC with the CN and other
models. The results of this experiment showed that both a re-
vision of the causal attribution equation and the consideration
of statistical uncertainty are crucial to explain the findings.

The Power PC Model of Causal Attribution
According to Cheng’s (1997) power PC theory, causal

power (or causal strength) is a hypothetical, unobservable en-
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tity that represents the strength of causes. Mathematically,
causal power is (in the generative case) expressed as the prob-
ability with which a target cause brings about its effect in a
hypothetical world in which all alternative observed and un-
observed causes of the effect are absent. Because of the pos-
sibility of unobserved alternative causes, causal power can-
not be assessed directly but must be inferred based on the
observed covariation and background assumptions. For gen-
erative causes, the following equation can be used to estimate
the causal power wc of a target cause C:

wc =
P(e|c)−P(e|¬c)

1−P(e|¬c)
=

∆P
1−wa

(1)

In this equation, wa represents the aggregate causal power
of all alternative causes A of the effect, which are assumed to
exert their influence independently of C.

Under the causal Bayes net framework, the causal power of
C, wc, corresponds to the probabilistic weight of the causal ar-
row that connects C with its effect E in a common effect struc-
ture in which the target cause C and the alternative causes A
combine in a noisy-OR gate (see S1 in Figure 2). Likewise,
wa corresponds to the weight of node A.

The CN Measure of Causal Attribution
Cheng and Novick (2005) proposed several measures of

causal attribution that apply to different cases. The mea-
sure of causal attribution for cases in which both c and e are
present, as in the example above about Peter, utilizes the con-
cept of causal power in the following way to deliver the con-
ditional probability P(c → e|c,e):

P(c→ e|c,e) = wc

P(e|c) =
wc

wc +wa−wc ·wa
. (2)

Equation 2 shows that the CN model defines the probabil-
ity with which c is causally responsible for e given that both
have co-occurred by the fraction of the causal power of C
and the conditional probability of the effect in the presence
of C. Since the power PC theory assumes that C and A exert
their causal powers independently of each other, P(e|c) can
be rewritten as the sum of both causal powers minus their in-
tersection (see second step of Equation 2). Hence, what the
CN model delivers is an estimation of the relative frequency
of cases among all co-occurrences of C and E in which C’s
causal power is sufficient for the production of the effect. Our
key criticism is that this relative frequency, because it neglects
the possibility of preemption, frequently overestimates the
true proportion of cases in which we should actually causally
attribute E’s occurrence to C.

To illustrate the problem, let us consider the results of the
fictitious experiment shown in Figure 1 in which the influ-
ence of a chemical substance on the expression of a gene
was investigated. As it is the case that all mice in the test
group (P[e|c] = 1) but only one half in the control group
(P[e|¬c] = .5, the base rate) exhibit the gene, the results pro-
vide strong evidence for the existence of a strong effect of the
chemical. In fact, by applying Equation 1 one can see that

Control group: not treated with chemical Test group: treated with chemical 

= Gene 
expressed

= Gene not 
expressed

Figure 1: Illustration of a hypothetical study testing the effect of a
chemical on the expression of a gene. The control group is shown
on the left and the test group treated with the chemical substance on
the right. Mice having the gene expressed are depicted in blue.

the causal power of the substance equals 1. Crucially, so does
P(c → e|c,e). What the CN model therefore prescribes is
that we should attribute causal responsibility to the chemical
whenever the chemical and the gene are both present. But
should we really be maximally confident that the expression
of the gene in, for instance, Mouse # 25 must be causally at-
tributed to the causal power of the chemical? If you have
doubts, you were probably led by a prior assumption about
the point in space and time at which the causal background
factors A produced the observed base rate of fifty percent: in
the given scenario it seems likely that these factors (e.g., tran-
scription factors) already produced their effects prior to the
introduction of the chemical. Under this assumption, how-
ever, it seems likely that not only fifty percent of the mice
in the control condition but also in the test group already pos-
sessed the gene prior to the study. Consequently, in those fifty
percent of the mice it cannot be the chemical that is causally
responsible for the effect because its causal efficacy has been
preempted by the background factors.

A New Measure of Causal Attribution
In the example it seems appropriate to say that the expres-

sion of the gene is caused by the chemical in only about half
of the observed cases in which C and E have co-occurred.
This conclusion is based on the assumption that in roughly
half of the cases the causal power of the chemical has been
preempted by the causal power of the background factors A.
We propose a new measure of causal attribution that captures
this intuition by refining Equation 2 so that all cases among
the joint occurrences of C and E for which the effect of C is
assumed to be preempted by A are partialed out. This refined
measure is given by:

P(c
singular−−−−→ e|c,e) = wc · (1−α ·wa)

wc +wa−wc ·wa
, (3)

in which we introduce α as a discounting parameter that rep-
resents the assumed probability with which A is a preemptive
cause of the effect. For illustration, if we assume that A has
caused the observed base rate of 0.5 prior to the application of
the chemical, and if we assume further that A’s causal power
has produced roughly equal proportions of the effect in both
groups, α takes on a value of 1. In this case, the point estimate

for P(c
sing.−−→ e|c,e) is about .5 instead of 1.0 that is predicted
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Figure 2: The two causal structures considered by the structure in-
duction model of singular causation as mutually exclusive explana-
tions for observed patterns of covariation. C is a general cause of
E under S1 whereas all co-occurrences of C and E are coinciden-
tal under S0. The parameters wc and wa denote the causal powers
of the observed cause C and the unobserved background causes A,
respectively; bc denotes the base rate of C.

by Equation 2. The difference between the two measures is
that under the CN model the presence of two sufficient causal
powers (wc and wa) is invariably conceptualized as a case of
“symmetric overdetermination”, whereas the possibility that
causes can preempt each other is neglected. Equation 3 takes
into account the possibility of preemption and thus delivers
an estimation of the relative frequency of singular cases in
which the target cause has actually been successful in gen-
erating the effect. In our view, preemption of C by a previ-
ously present background factor A seems to be prevalent in
the cover stories typically reported in the literature (see e.g.,
Griffiths & Tenenbaum, 2005). However, the discounting pa-
rameter α can be set to capture other cases. For example,
cases of overdetermination or cases in which A is preempted
by C could be modeled by setting α to 0. In these cases, our
model and the CN model make identical predictions because
Equation 3 reduces to Equation 2.

SISC: The Structure Induction Model of
Singular Causation

Apart from the fact that the CN model does not take into
account the possibility that preempted causes should not be
classified as singular causes, a further problem of the CN
model is that it is insensitive to statistical uncertainty about
both the underlying causal structure and the size of the causal
parameters. SISC (Stephan & Waldmann, 2016) is sensitive
to both types of uncertainty.

SISC was developed in the framework of causal Bayesian
inference models; it takes observed data as evidence to update
prior probabilities of mutually exclusive hypotheses. Under
SISC, these competing hypotheses represent two causal struc-
tures that can account for a particular observed pattern of co-
variation. The two causal structures, S0 and S1, are depicted
graphically in Figure 2. While there exists a causal arrow
from C to E in S1, which indicates that C is a general cause
of E, there is no causal arrow between C and E in S0. Both
models assume a background cause A.

The core principle of SISC can be illustrated with Figure 1.
Assume someone suggests that S0 is the causal structure that
underlies the results. Under this hypothesis all observed co-
occurrences of C and E would be mere coincidences. Yet,
since the observed distribution of the events appears very
unlikely to be coincidental, S0 is weakened as an explana-
tion while the alternative hypothesis, S1, is proportionally
strengthened. In fact, the probability computed by SISC for

S1 for the data shown in Figure 1 (i.e., the posterior probabil-
ity of S1) is almost 1. Now, imagine the same study had been
conducted with a sample of merely eight mice but that P(e|c)
and P(e|¬c) remain the same. In this case, it seems less
certain that S1 underlies these results. Smaller samples not
only increase uncertainty about the underlying causal struc-
ture, they also impede the reliable estimation of the size of
parameters. SISC is sensitive to both types of uncertainty

when estimating P(c
sing.−−→ e|c,e).

SISC implements different steps. First, it derives the pos-
terior probabilities for each causal structure illustrated in Fig-
ure 2. Applying Bayes’ rule, the posterior probability for a
causal structure is proportional to the likelihood of the data
given the causal structure, weighted by the structure’s prior
probability:

P(Si|D) ∝ P(D|Si) ·P(Si). (4)

P(D|Si) is the likelihood of the data given a particular
structure, which is the integral over the likelihood function
of the parameter values under the particular structure. P(Si)
represents a structure’s prior probability. The model initially
assumes that both structures are equally likely, that is, P(Si)
= 1/2. When data become available, the posterior for each
causal structure varies systematically with the observed con-
tingency: the higher the contingency, the more likely S1 be-
comes.

Next, the model estimates the parameters bc, wc, and wa,
for each causal structure. To express parameter uncertainty,
distributions rather than point estimates are inferred. The pos-
terior probability distributions for the parameters, P(w|D),
are proportional to the likelihood of the data given the set of
parameters w, weighted by the prior probability distributions
of the parameters:

P(w|D) ∝ P(D|w) ·P(w). (5)

P(D|w) is the likelihood of the data given the parameter val-
ues for bc, wc, and wa. P(w) is the prior joint probability
of the parameters. The prior distributions of the parameters
are independently set to flat, uninformative beta(1,1) distri-
butions. Since C does not cause E under S0, wc is held fixed
at 0 for this causal structure.

In the last step, SISC computes P(c
sing.−−→ e|c,e) for each

parameterized structure. The new discounting parameter al-
pha is set based on background assumptions about the target
scenario. For the scenarios we used in the present experi-
ments it is set to 1 because preemption seems to be highly
probable. As all co-occurrences of c and e are coincidences

under S0, P(c
sing.−−→ e|c,e) is set to 0 for S0. For S1, Equation 3

is applied. The final output of SISC is a single estimate for

P(c
sing.−−→ e|c,e), which is obtained through integrating out the

two causal structures by summing over the derived values of

P(c
sing.−−→ e|c,e) for each structure weighted by its posterior

probability:

P(c
sing.−−→ e|c,e;D) = ∑

i
P(c

sing.−−→ e|c,e;Si) ·P(Si|D). (6)
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Experiment 1a
The goal of Experiment 1a was to test SISC against the

CN model of causal attribution for data sets with a suffi-
cient cause, i.e., P(e|c) = wc = 1, but varying base rates
of the effect. Whereas the CN model predicts maximal con-
fidence in singular causation assessments for any observed
co-occurrence of C and E in this case, SISC predicts an inter-
action with the base rate under the assumption that A’s causal
power generally preempts the effect of C. The goal of Ex-
periment 1a was to demonstrate that this predicted deviation
from the CN model is expected for the conceptual reasons
discussed above. To rule out uncertainty as an explanation,
we used sample sizes in our data sets for which the posterior
probabilities of S1 computed by SISC are close to 1. The pre-
dictions of the models are shown in Figure 3. We set α in
Equation 3 to 1, which represents complete preemption of C
by A. We also considered a Bayesian variant of the CN model
that has been proposed by Holyoak et al. (2010). This model
is sensitive to parameter uncertainty; it uses probability dis-
tributions over the parameters instead of point estimates. As
Figure 3 shows, the predictions of both variants of the CN
model converge for large sample sizes because the influence
of parameter uncertainty decreases.

Methods
Participants 90 participants (Mage = 33.24, SDage = 12.50,
35 female) were recruited via Prolific Academic (www
.prolific.ac) and received a monetary compensation of
£ 0.60.
Design, Materials, and Procedure Three contingencies (see
Figure 3) were manipulated between subjects with each par-
ticipant responding to two causal test queries (general causa-
tion vs. singular causation). We included the general causa-
tion query to establish that uncertainty cannot account for the
predicted pattern of singular causation ratings. The task was
a standard elemental causal induction task. As cover story
we used the gene expression scenario (cf. Griffiths & Tenen-
baum, 2005) mentioned above: subjects were asked to as-
sume that they were biologists who are interested in whether a
particular chemical causes the expression of a particular gene
in mice. Subjects read that they will be asked to conduct an
experiment on the computer screen in which they will treat
a random sample of mice with the substance while a control
sample will remain untreated. It was mentioned that the con-
trol sample is important as some individuals may show the
gene expression for other reasons.

Participants were presented with an interactive animation
showing the two samples arranged as in Figure 1, and a
pipette containing a reddish chemical substance. All mice
had gray color in this animation. Participants then dropped
the substance into the test group area, whereupon the back-
ground color changed to a light red. On the next screen, sub-
jects checked the results of the experimental manipulation by
dragging a small magnifying glass over all the mice. Mice
with the gene then became blue and those without became
yellow. The final state of the animation looked like Figure 1.

P(e|c)
P(e|¬c)

Figure 3: Model predictions and results of Experiments 1a and b.
The results show mean ratings and 95% bootstrapped CIs. Dark bars
show general causation judgments; light bars singular judgments.

Subsequently, participants responded to two test questions.
The general causation query referred to the causal structure.
Participants were asked to indicate on a slider how confident
they were that the chemical has an effect on the expression of
the gene (from “very certain that the chemical has no effect”
to “very certain that the chemical has an effect”). The singular
causation query asked subjects about Mouse #25 from the test
group. Participants were asked to indicate on a slider how
confident they were that it was the chemical substance that
caused the expression of the gene in this single case (from
“very certain that it was not the chemical” to “very certain
that it was the chemical”).

Results and Discussion
Figure 3 shows the results. The prediction for general

causation responses corresponds to the posterior probabil-
ity of S1 computed by SISC. As predicted by the posterior
probability of S1, all general causation ratings were high,
indicating very little uncertainty about the general causal
structure. The singular causation ratings, by contrast, de-
creased with an increasing base rate of the effect, as pre-
dicted by SISC but not by the two CN models. The results
of a multilevel model analysis revealed significant main ef-
fects for type of causal query, χ2(1)= 32.45, p < .001, as
well as contingency, χ2(1)= 12.63, p < .01. General cau-
sation ratings were, on average, higher than singular cau-
sation ratings. Figure 3 shows that the main effect of con-
tingency is driven by the decrease in singular causation rat-
ings. Planned contrasts revealed that the general causation
ratings neither differed between the first and second contin-
gency, t(80) = 0.60, nor between the second and third con-
tingency, t(80) = 0.13. Consequently, the interaction effect
of query × contingency was also significant χ2(1)= 13.10,
p < .01. Planned contrasts breaking down this interaction ef-
fect showed that the difference between general and singular
causation ratings was higher for the second than for the first
contingency, t(80)= 2.10, p < .05, r = .23, and also higher for
the third compared to the second contingency, t(80)= 3.70,
p < .001, r = .38. In sum, both the trends for general as well
as for singular causation ratings are captured well by SISC.
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The observed trend for the singular causation judgments is,
however, neither predicted by the CN model using point esti-
mates nor by the Bayesian extension incorporating parameter
uncertainty.

Experiment 1b
The goal of Experiment 1b was to assess how likely par-

ticipants think it is that a particular individual from the test
group already exhibited the effect caused by the background
factors prior to the occurrence of the cause. Thus, instead of
singular causation judgments for a particular individual, we
asked subjects to provide a probability judgment. Crucially,
responses to this query provide us with an estimate of the α
value in Equation 3 that participants assumed.

Methods
Participants 88 participants (Mage = 31.22, SDage = 10.84,
42 female) participated in this only study and received a mon-
etary compensation of £ 0.60.
Design, Materials, and Procedure The study design and the
materials were the same as in Experiment 1a. The only dif-
ference was that, instead of a singular causation judgment for
Mouse #25, we asked participants how likely they think it is
that this individual already had the gene expressed prior to the
experiment. The general causation query remained the same.

Results and Discussion
Figure 3 shows that we replicated the pattern for general

causation judgments found in Experiment 1a. Planned con-
trasts revealed that these ratings did not differ (all t values
< 1). However, the probability judgments about the presence
of the effect prior to the application of the chemical in the sin-
gle case showed the opposite trend as the singular causation
judgments in Experiment 1a. This finding supports our hy-
pothesis that assumptions about preemption influence singu-
lar causation judgments, as predicted by Equation 3. Planned
contrasts confirmed that ratings increased from the first to the
second, t(71) = 2.67, p < .01, r = .30, and also from the sec-
ond to the third contingency, t(71) = 3.16, p < .01, r = .35.
Furthermore, the results indicate that participants indeed as-
sumed high α values.

Experiment 2
Experiment 1a showed that singular causation ratings for

sufficient causes deviate systematically from the predictions
of the CN models. This deviation is predicted as a conse-
quence of assumptions about preemption relations between
C and A. Experiment 2 pursued two main goals: first, we
aimed to test SISC using a larger set of contingencies with a
combination of different levels of P(e|c) and P(e|¬c). Sec-
ond, we wanted to demonstrate that parameter and structure
uncertainty indeed influence general and singular cause judg-
ments. We used the set of contingencies studied in Buehner,
Cheng, and Clifford (2003) but excluded the one contingency
from the set in which the effect never occurs. It does not make
sense to ask for singular causation if the effect is absent. The
data sets and model predictions are shown in Figure 4. We set

(a)

(b)

(c)

(d)

(e)

(f)

(g)

P(e|c)
P(e|¬c)

(h)

Figure 4: Predictions of different models and results (means and
within-subjects adjusted 95% CIs) of Experiment 2. Graphs (a) and
(b) refer to general causation assessments. All other graphs refer to
singular causation assessments.

the discount parameter α to 1 again.

Methods
Participants 82 participants (Mage = 34.41, SDage = 10.42,
31 female) participated in this online study and were paid
£ 1.00 for their participation.
Design, Materials, and Procedure The causal query (gen-
eral causation vs. singular causation) was manipulated be-
tween subjects, whereas contingency was varied within sub-
ject. The fourteen contingency data sets were presented in
random order. We used the same cover story as in Experi-
ment 1, except that subjects read that they will investigate the
effects of fourteen different chemicals on fourteen different
genes in fourteen different samples. We pointed out that the
results of the studies are independent of each other. The as-
signment of mice to the cells of the contingency tables was
randomly determined. Also the test mouse for the singular
query showing both c and e was randomly chosen prior to the
experiment.

Results and Discussion
Figure 4 shows the results and the predictions of the differ-

ent models: (a) and (b) display the predictions of SISC for
general causation and the mean general causation responses.
Panels (c) and (d) show the predictions of SISC and the re-
sults regarding the singular causation queries. Predictions of
the standard CN model and its Bayesian variant are displayed
in (e) and (f). Graph (g) shows predictions of SISC when α
is set to zero but both structure and parameter uncertainty are
incorporated. Finally, (h) shows point estimates of Equation 3
while neglecting statistical uncertainty.

Table 1: Model comparisons for singular causation judgments in
Experiment 2. ∆P refers to the different contingency levels (.00,
.25, .75, 1.00) within the whole data set; r∆P expresses the model
fits for these levels. N/A represents undefined values.

Fit measure SISC CN Model Bayesian CN Model SISC CN Model Point Est. Eq. 3

r∆P=.00 .72 N/A -.78 -.68 N/A
r∆P=.25 1.00 .21 .38 -.61 .98
r∆P=.50 .88 .68 .79 .44 .85
r∆P=.75 1.00 N/A 1.00 -1.00 1.00
Mr ∆P .90 .44 .35 -.46 .94
roverall .94 .88 .93 .90 .90

R2 .88 .77 .87 .82 .82
RMSE .11 .27 .09 .14 .22
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The overall pattern for both general and singular causation
ratings was captured best by the revised version of SISC. As
in our previous research, the results show that participants dif-
ferentiated between general and singular queries. Moreover,
the responses to the general causation query replicate those
found in Griffiths and Tenenbaum (2005). Most importantly,
the singular causation assessments were captured best by the
revised SISC. The other models, by contrast, struggled to ac-
count for the local trends observed within the subsections of
the contingency set in which ∆P is constant. The difference
between the singular causation ratings and the point estimates
for the revised causal attribution measure (Equation 3) im-
plies that participants were sensitive to structure and parame-
ter uncertainty.

A multilevel model analysis confirmed the main effect
of contingency, χ2(13)= 1010.04, p < .001, as well as the
interaction between contingency × query, χ2(13)= 49.39,
p < .001, that is shown in Figure 4. To test the different mod-
els, we computed different fit measures shown in Table 1. As
can be seen there, SISC achieved a good fit in the overall fit
measures (bottom part of the table). It explained most vari-
ance, with R2 = .88, and yielded the second smallest RMSE
of .11. Yet, all models obtained relatively high values on the
global measures. Even the CN model with the lowest overall
fit accounted for 77 percent of the variance. The similarity
between the models is not unexpected, however, as all mod-
els are sensitive to ∆P. More interesting are the fit measures
for the subsections of the contingency set in which ∆P is kept
constant. The upper part of Table 1 shows that SISC yielded
high fit values there, too, and hence accounted well for these
local trends, whereas the Bayesian CN model, which yielded
the smallest RSME, even showed negative correlations here.

General Discussion
We addressed two different problems that the power PC

framework of causal attribution (Cheng & Novick, 2005)
faces: first, the CN model attributes causal responsibility for
the occurrence of a particular effect e to a present singular
event c whenever its causal power is sufficient to bring about
the effect. We have argued that this conceptualization fails
to take into account that people make assumptions about the
point in time at which different causal powers exert their in-
fluences. Not every manifestation of a sufficient cause c needs
to be causally responsible for an observed outcome; it might
be the case that a competing cause (e.g., a) preempts it. This
problem of redundant causation, which occurs whenever two
causes are individually sufficient for the effect, is widely ac-
knowledged in the philosophical literature as a challenge for
models of causation (see, e.g., Paul & Hall, 2013). To account
for the possibility of preemption we have modified the equa-
tion developed by Cheng and Novick (2005) as an account
of causal attribution. The revised equation includes the dis-
count parameter α that can be set to express domain-related
assumptions about the temporal relations between the alter-
native causal factors. A second shortcoming of the standard
causal attribution model (Cheng & Novick, 2005) is that it

does not take into account statistical uncertainty about struc-
ture and causal parameters (cf. Griffiths & Tenenbaum, 2005;
Meder et al., 2014). Our model SISC remedies both short-
comings. It is sensitive to both the temporal relations between
the alternative causes and to statistical uncertainty. Our ex-
periments showed that both aspects are important to account
for subjects’ judgments about singular causation.

We have set the discount parameter α to 1 in Equation 3
which implies a complete preemption relation between A and
C whenever A’s causal power is sufficient in a situation. Bet-
ter fits might be possible by estimating the size of α for
each individual subject separately. We avoided this strat-
egy to demonstrate that model improvements can already be
achieved with very general assumptions. The goal of future
experiments will be to manipulate the size of α by manipu-
lating domain assumptions about the temporal relations be-
tween C and A. Cases in which α is 1 are situations in which
A always preempts C. The cover stories used in the present
experiments are an example in which it is plausible to assume
that A represents a temporally stable factor that has already
been efficacious prior to the manipulation of C. Although
preemption seems to be the default situation in most singular
causation scenarios, there might be rare cases in which other
assumptions need to be made. Consider cases of symmetric
overdetermination that have also been discussed in the litera-
ture (see Paul & Hall, 2013): in the famous firing squad sce-
nario, for example, in which each shooter is a sufficient cause
for the death of the target, a possible intuition is that each
shooter should be counted as a singular cause of the death of
the victim. In this case, alpha would have to be set to zero.
Similarly, alpha would have to be set to zero if C preempts A
so that A cannot manifest its potential causal power. Cases of
temporal variability between C and A might also be an inter-
esting topic for future studies.
Acknowledgments We thank Jonas Nagel and Ralf Mayrhofer for
helpful discussions.
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Abstract

Singular causation queries require an assessment of whether
a singular co-occurrence of two events c and e was causal or
simply coincidental. The current study builds on our previ-
ous research (Stephan & Waldmann, 2018) in which we pro-
posed a computational model of singular causation judgments.
The model highlights that singular causation judgments need
to take into account the power of the target cause C and of
alternative causes A, as well as the possibility of preemption.
What was missing was a detailed model allowing us to esti-
mate the probability of preemption of a target cause by the
alternative causes. The present research fills this gap by elab-
orating the temporal assumptions that might enter assessments
of singular causation. We focus on assumptions about tempo-
ral precedence between target and alternative causes, with a
specific focus on assumptions about causal latency. We report
the results of two new experiments supporting the model.
Keywords: singular causation; causal attribution; preemption;
time; causal reasoning; computational modeling

Causal representations support various inferences. They
enable us to make predictions, to form diagnoses, or to make
judgments about singular causation (Waldmann, 2017). In
the present research our goal is to develop and test a model
explaining judgments about singular causation. How does a
person come to believe, for example, that it was the medicine
she took that caused her to feel sick, or that it was the combi-
nation of keys she pressed that caused the laptop’s screen to
turn dark, or that it was the storm last night that caused the
flower pot to be shattered into pieces? To put it more gener-
ally, how do reasoners assess whether a singular instantiation
of a cause factor C was actually causally connected to a sin-
gular instantiation of its effect E?

Judgments about singular causation are so prevalent in ev-
eryday life that it is easily missed that validating them is a
challenging task for the mind. The reason why it is cogni-
tively challenging is that causal powers that bind some events
together are not directly accessible to our senses (Cartwright,
1989; Cheng, 1997). The computational problem that needs
to be solved is how a genuine causal co-occurrence of events
can be discriminated from a mere coincidental one.

Stephan and Waldmann (2018) have proposed a computa-
tional model intended to provide a solution to this problem.
Their model is a generalization of Cheng and Novick’s (2005)
power PC model of causal attribution, which itself relies on
Cheng’s (1997) power PC theory. Cheng (1997) has shown
how the unobservable powers of causes, operationalized as
the probability with which causes generate their effects in
the hypothetical absence of alternative causes, can be inferred
from observable covariation data. Cheng and Novick (2005)
adopted this framework and have applied it to the question
of how causal power knowledge ought to be used to make

causal attributions in different contexts. For example, when
it is known that a potential cause C and a potential effect E
have co-occurred on an occasion (c, e), their model provides
an answer to P(c→ e|c,e), the probability that c and e were
causally connected on this occasion.

Stephan and Waldmann (2018) criticized and refined
Cheng and Novick’s (2005) model. Cheng and Novick’s
model focuses solely on the causal powers of the target and
the alternative causes, embodying the assumption that a sin-
gular instantiation of C and E is less likely to be coinciden-
tal when C is known to operate with a large causal power.
However, the model neglects another possibility why a sin-
gular co-occurrence of C and E might have been coinciden-
tal: causes, no matter how strong their power is, can be
preempted in their efficacy by competing alternative causes
(for an overview of theories on preemption, see, e.g., Paul
& Hall, 2013). It is possible that an alternative cause inter-
cepts the target cause and generates the effect before the tar-
get cause has had a chance. Stephan and Waldmann (2018)
have therefore proposed a refined model that includes a term
that captures the probability of preemption through alterna-
tive causes.

To estimate the probability that a target cause was pre-
empted, what needs to be considered beyond the powers of
the potential causes is temporal information. One type of
temporal information that should influence how strongly a
reasoner believes that a target cause was preempted by an
alternative cause is the assumed difference between their in-
stantiation times: everything else being equal, a target cause
is more likely to be preempted by an alternative cause if the
latter occurs earlier than the former. Stephan and Waldmann
(2018) reported a set of experiments in which the cover sto-
ries suggested that unobserved alternative causes occurred
prior to the target cause, and participants’ singular causation
judgments were explained well by the modified model incor-
porating the possibility of preemption.

Another type of temporal information that is likewise rel-
evant to assess the probability of preemption is information
about causal latency, by which we mean the time it takes
a cause to produce its effect. Consider a situation in which
a potential alternative cause A is instantiated simultaneously
with or even later than the target cause C. In such situations,
c can still be be preempted by a when a’s latency is shorter
than c’s.

Stephan and Waldmann (2018) did not spell out in their
article how causal latency information about the compet-
ing potential causes of an outcome can be formally repre-
sented and combined with causal power information to es-
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timate P(c→ e|c,e) and the probability of preemption. Nor
did they manipulate causal latency information in their ex-
periments. We begin to address these shortcomings in the
present research, and will primarily focus on the role causal
latency plays for singular causation judgments. First we will
review Cheng and Novick’s (2005) model and contrast it with
Stephan and Waldmann’s (2018) modified version.

The Power PC Model of Causal Attribution
Cheng and Novick (2005) proposed a model in which the

probability with which an instantiation c of a cause factor C
has actually caused a token event e instantiating an effect fac-
tor E is represented by P(c→ e|c,e). To estimate this prob-
ability, they have made use of Cheng’s (1997) causal power
theory.

Cheng (1997) has shown how the power of a cause factor
C, denoted by wC, can be estimated from observable covaria-
tion data given a number of causal background assumptions.
A graphical representation of the unobservable causal struc-
ture that is assumed by causal power theory to underlie the
observable contingency ∆P between a target cause C and a
target effect E is shown in Fig. 1 (see also Griffiths & Tenen-
baum, 2005; Pearl, 2000). The theory considers two causal
influences on E: the target cause C, and A, with A repre-
senting the sum of all unobserved alternative causes of E. It
is assumed that C and A occur independently of each other
with the base rates bC and bA. Furthermore, C and A are
assumed to cause E with independent (i.e., non-interacting)
powers, denoted by wC and wA, respectively. These as-
sumptions allow it to explain the probability of E: P(E) =
bC ·wC + bA ·wA− bC ·wC · bA ·wA. Accordingly, the proba-
bility of E given C is P(E|C) = wC + bA ·wA−wC · bA ·wA,
and the base rate of E is P(E|¬C) = bA ·wA. The latter two
equations provide a causal explanation of the observed con-
tingency: ∆P = wC + bA ·wA−wC · bA ·wA− bA ·wA. Sub-
stituting bA ·wA with P(E|¬C) and re-arranging the equation,
one obtains the causal power of C:

wC =
∆P

1−P(E|¬C)
. (1)

As an illustration, consider the table in Fig. 1 with the fol-
lowing entries: n(c,e) = 21, n(c,¬e) = 3, n(¬c,e) = 12, and
n(¬c,¬e) = 12. Imagine these data resulted from a study
testing whether a drug causes nausea as a side effect. In the
control group (¬c), 12 of 24 subjects developed nausea. The
causal power theory assumes that these cases are due to the
unobserved factors included in A. In the treatment group 21
subjects had nausea. As A is supposed to occur equally likely
in C’s presence, these cases are explained by the joint influ-
ence of C and A. Based on the independence assumption
we can infer that 12 of the 21 subjects with nausea would
have developed nausea due to A alone had C not been present.
Thus, there remained 12 subjects in which C had the chance to
reveal its power. As there are 21 subjects with nausea, we can
therefore conclude that the drug exclusively caused nausea in
nine of these 12 cases. Its causal power thus is wC = .75.

Figure 1: The relation between observable covariation data and un-
observable causal structure. C and E in the causal structure denote
the cause and effect factor, respectively. A comprises all unobserved
alternative causes of E. bC and bA denote the base rates of C and A;
wC and wA denote the causal powers of C and A.

Now imagine you learned that a person took the drug (c)
and felt sick (e). To compute P(c → e|c,e), Cheng and
Novick (2005) proposed the following equation:

P(c→ e|c,e) = wC

wC +wA−wC ·bA ·wA
=

wC

P(E|C)
. (2)

In this equation the power of C is in the numerator and the
conditional probability of E given C is in the denominator.
Stephan and Waldmann (2018) argued that what this equation
thus estimates is the relative frequency of cases among all
observed co-occurrences of C and E in which C’s power was
probabilistically sufficient for E. To see this, consider first
how often E occurred in the presence of C in our example.
This was the case in 21 of the 24 test group subjects. Hence,
we obtain P(E|C) = .875. From Eq. 1 we know that C has
a power of wC = 0.75, implying that C was sufficient in 75
percent of the treatment subjects (in 18 of the 24). Applying
Eq. 2, we see that model thus concludes that C caused E in
18 of the 21 cases in which C and E co-occurred, yielding
P(c→ e|c,e) = 18

21 = 0.86. The probability of a singular co-
occurrence having been causal is supposed to be 86 percent.

A Modified Model Sensitive to Preemption
Stephan and Waldmann (2018) have argued that the power

PC model of causal attribution tends to overestimate the prob-
ability of singular causation. Their argument was that not on
every occasion on which a cause factor C is probabilistically
sufficient to generate E it has actually caused E because it is
possible that C has been preempted by an alternative cause
factor A that succeeded in causing E before C could have
taken effect. To illustrate the problem, imagine the extreme
case in which all alternative factors A generated their effects
before C. In this case we would say that there are 12 sub-
jects with nausea due to A in each group, and it seems natural
to say in this situation that C actually caused nausea only in
those nine subjects that were added to these 12. The probabil-
ity that a subject from the test group suffered from nausea due
to the drug would hence be P(c→ e|c,e) = 9

21 = 0.43, and
not 0.86. The power PC model of causal attribution seems
to yield the correct result only in a situation in which C pro-
duces all its effects prior to A, or when the two causes are in
a relation of symmetric overdetermination.

To incorporate the possibility of preemption by alternative
causes, Stephan and Waldmann (2018) have proposed the fol-
lowing refined equation:
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Figure 2: Pairs of gamma distributions contrasted in the five conditions of Exp. 1. The shape (κ) and scale (θ) parameters of the five different
gamma distributions are listed for each pair. The depicted α values were obtained using the MC algorithm corresponding to Eq. 4. The dark
distributions show the causal latencies of the target cause and the light distributions show the causal latencies of the alternative cause.

P(c→ e|c,e) = wC−wC ·bA ·wA ·α
P(E|C)

=
wC · (1−bA ·wA ·α)

P(E|C)
.

(3)
Eq. 3 extends the numerator of Eq. 2 by subtracting from

wC the product of wC, bA, wA, and a newly introduced pa-
rameter α. The product of bA, wA, and α captures the prob-
ability of preemption. The intersection of wC, bA, and wA
identifies the occasions in which C and A are both proba-
bilistically sufficient to generate E. This part of the term
is relevant because the problem of preemption occurs only
on occasions in which the potential causes C and A are both
probabilistically sufficient to generate the effect. On those
occasions it can either be the case that C preempts A, that A
preempts C, or that both act synchronously (discussed in the
philosophical literature under the term symmetric overdeter-
mination, see, e.g., Paul and Hall 2013). Stephan and Wald-
mann (2018) introduced the α parameter as a weighting fac-
tor that narrows down the intersection of wC, bA, and wA to
those occasions on which C is preempted by A. To illustrate
the idea, consider again the nausea example. In this exam-
ple, wC · bA ·wA = 0.75 · 0.50 = 0.375. Now imagine again
the extreme case in which the factors in A produced their ef-
fects prior to C. In this scenario, all 37.5 percent of the cases
in which C and A were both sufficient for E were actually
caused by A. Such a situation can be modeled by setting α to
1. This would yield P(c→ e|c,e) = 0.75−0.375·1.0

0.875 = 0.43. By
contrast, in the extreme cases in which C generates its effects
prior to A or synchronously with A, α should be set to 0. In
this case Eq. 3 reduces to Eq. 2.

Incorporating Causal Latency Information
We showed in the previous sections how the possibility of

preemption can be incorporated into a model of causal at-
tribution. The open question is how α can be estimated in
different contexts. This is where temporal information about
the potential causes comes into play.

We will focus on the situation in which A only consists
of a single alternative cause factor of the effect. As pointed
out above, an obvious factor influencing α in such situations
is the difference between the onset times of C and A. This
difference can be represented by ∆t = ta− tc. Everything else
being equal, when A occurs earlier than C, it is more likely
that A preempts C than vice versa.

Additionally, the probability of preemption is influenced
by the causal latency of the potential causes. By causal la-
tency we mean the time it takes a cause to produce its effects.
Variation in the latency with which a cause generates its effect
opens up the possibility that even when C and A are instanti-
ated simultaneously, or when A is instantiated later than C, C
could still be preempted by A.

To model causal latencies we will use gamma distribu-
tions, which are, for example, used in queueing theory to
model waiting times. In recent studies, Bramley, Gersten-
berg, Mayrhofer, and Lagnado (in press) used gamma distri-
butions to model the role of time in causal structure induc-
tion (see also Lagnado & Speekenbrink, 2010). A gamma
distribution is a continuous probability distribution character-
ized by two parameters: shape, κ > 0, and scale, θ > 0. The
expected value of a random variable X following a gamma
distribution is E[X ] = κ · θ. Its variance is Var[X ] = κ · θ2.
Different pairs of gamma distributions that we contrasted in
our experiments are depicted in Fig. 2.

The representation of causal latencies based on gamma dis-
tributions can be used to estimate α in different types of sit-
uations. We will here focus only on situations in which it is
known that C, A, and E are all present. Moreover, the causal
latency distributions of C and A and the size of ∆t are known.
In these situations α corresponds to:

α = P(tA→E +∆t < tC→E |e,c,a,∆t). (4)

In this equation, tC→E and tA→E denote the causal latencies
of C and A (cf. Bramley et al., in press), which are given by
the respective gamma distributions. In this situation α corre-
sponds to the probability that the sum of the causal latency
of the competing cause A and the time lag between C’s and
A’s onset times is smaller than the causal latency of C, given
e, c, a, and ∆t . This probability can be estimated with the
following Monte Carlo (MC) algorithm:

1. Sample N pairs of causal latencies (xc, xa) from the gamma
distributions of C and A, respectively.

2. Calculate xa′ = xa + ta− tc for all sampled xa-values.

3. Count all pairs for which xc > xa′ .

4. Divide this count by N.

The values for α depicted in Fig. 2 were obtained by applying
this algorithm with N = 10,000.
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Experiment 1
The goal of Exp. 1 was to compare different scenarios in-

tended to manipulate α and to compare the predictions of our
model for these situations with people’s singular causation
judgments. To simplify the task, and to isolate the influence
of causal latency, we used a test scenario in which the compet-
ing cause factors occurred simultaneously (i.e., ∆t = 0). Fur-
thermore, we considered only deterministic causes in this first
experiment. Fig. 2 shows the five gamma distributions (G1 -
G5; higher numbers indicate higher expected values) that we
contrasted in five conditions. The latency distributions be-
longing to the target cause C in each condition are depicted
in dark blue. For the first pair, for example, in which we con-
trasted G1 and G5, the target cause factor’s latency follows
G1, whereas the latency of the alternative cause follows G5.
Fig. 2 also shows the different α values estimated with the al-
gorithm presented above. For the first pair α = 0.01, which
in the case of deterministic causes directly corresponds to the
probability that C was preempted by A. Thus, participants
should be confident in this condition that it was indeed the
target cause C that brought about the observed outcome. In
the fifth condition, by contrast, in which C followed G5 and
A followed G1, participants should be confident that C did
not cause the effect. Fig. 2 also shows that all the other con-
ditions should elicit more uncertainty. In the third condition,
for example, in which C and A have the same latency distribu-
tion (G3), α = 0.50. Here participants should be maximally
uncertain about the singular cause of the outcome.

Fig. 4 shows the predictions of the power PC model of
causal attribution (Eq. 2) as well as those of our refined model
that computes α according to the algorithm corresponding to
Eq. 4. We labeled this model “Alpha Precise” because we
also considered an “Alpha Coarse” model. Alpha Coarse es-
timates only whether the expected values of the competing
distributions differ and neglects their variances. It thus as-
signs a value of 1 to α if the expected value of the causal la-
tency distribution of the target cause is larger than the one of
the competing cause, and 0 otherwise. Alpha Coarse treats
the situation in which both causes follow identical latency
distributions as a case of symmetric overdetermination, and
therefore predicts that both cause factors should be seen as
singular causes in this situation.

Participants
Two hundred subjects (Mage = 27.14, SDage = 8.71, 119

females) who had at least an A-level degree and who were
native English speakers were recruited via Prolific (www
.prolific.ac). Subjects were paid £ 0.80 for their partic-
ipation.

Design, Materials, and Procedure
Participants were randomly assigned (n = 40) to one of

five key conditions. These conditions varied with respect
to the contrasted gamma distributions and with respect to
the gamma distribution associated with the target cause (see
Fig. 2). Because we included several balancing factors, the

Figure 3: Illustration of the learning task used in the experiments.

full design was a 2×2×2×5 between-subjects design. The
additional balancing factors will be introduced below.

Subjects were presented with a scenario about a fictitious
medieval kingdom called “Extonia”. They read that the king
had two watchtowers (“North” and “South”) built at the bor-
der to protect his empire from barbarians. These towers
were instructed to send carrier pigeons to the palace to cause
alarm whenever barbarians are spotted. Participants were
then asked to take the perspective of Extonia’s secretary of
defense who routinely inspects the flight durations of the pi-
geons from the two towers. Participants read that the flight
durations tend to differ between different pigeons, and that
they will therefore observe a sample of thirteen pigeons from
each tower. Before participants could proceed to the learning
task, they had to pass an instruction check.

During the learning task the screen looked similar to the
picture in Fig. 3. Whether participants began with tower
“North” or “South” was balanced between subjects. In each
trial the sending of a carrier pigeon was indicated with a de-
lay of 500ms by a circling of the watchtower. The arrival
of the pigeon was indicated by a colored circle surrounding
the palace. The thirteen flight durations for each tower corre-
sponded to thirteen quantiles of the respective gamma distri-
bution. We used quantiles so that subjects could be presented
small but yet representative samples. After each trial, partic-
ipants had to click a “Next” button, which was operational
500ms after the circle around the palace had been displayed.
The flight durations were presented in random order.

The test scenario described a singular situation in which the
palace had been alarmed by a tower so that it was possible to
repel a horde of barbarians. Participants read that the people
of Extonia wanted to decorate the tower that was responsi-
ble for the alarm but that there was the problem that both
towers had actually sent their pigeons simultaneously. To ex-
press their opinion about which tower was the actual cause
of the alarm, participants indicated on an eleven-point rating
scale (end points: “Definitely not caused by Tower ‘North/
South”’ and “Definitely caused by Tower ‘North/ South”’;
midpoint “50:50”) how strongly they believed that the alarm
was caused by Tower “North”/ “South”. Whether the target
cause was tower “North” or “South” was balanced between
subjects. The orientation of the rating scale was also balanced
between subjects.
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Figure 4: Model predictions and results (mean singular causation ratings and 95% bootstrapped CIs) for the different conditions of Exp. 1.
The predictions of the Power PC Model were obtained from Eq. 2. The predictions of the Alpha Coarse Model are based on α being obtained
through an ordinal ranking of the expected values of the compared gamma distributions. For the predictions of the Alpha Precise Model α
was calculated with the MC method corresponding to Eq. 4.

Results and Discussion
The results are shown in Fig. 4. Participants’ singular cau-

sation ratings (M1 = 0.91, SD1 = 0.10, M2 = 0.69, SD2 =
0.22, M3 = 0.54, SD3 = 0.24, M4 = 0.37, SD4 = 0.19,
M5 = 0.11, SD5 = 0.12, from left to right) followed a nega-
tive linear trend. A polynomial trend analysis confirmed the
negative linear trend, F(4,195) = 111.70, p < .001, r = .83.
No other polynomial trend was significant.

These results are at odds with the predictions made by the
power PC model of causal attribution (Eq. 2). Subjects took
into account information about the causal latency of the po-
tential cause factors to derive singular causation judgments.
Moreover, the singular causation judgments followed the pre-
dictions of the Alpha Precise model, which utilizes gamma
distributions to represent causal latencies. The correlation be-
tween model predictions and results was high, r = .99, and
statistically significant t(3) = 14.88, p < .001.

Experiment 2
In Exp. 1 we tested deterministic causes because we aimed

to isolate the influence that causal latency exerts on singular
causation judgments. As Eq. 3 shows, however, the probabil-
ity of preemption is given by the product of the causal powers
and α. In Exp. 2 we therefore studied probabilistic causes.
We tested a scenario in which both causes either had a causal
power of wC =wA = 0.83 or of wC =wA = 0.5. Additionally,
we manipulated α by using the first pair of gamma distribu-
tions (G1 vs. G5) shown in Fig. 2. We tested this combination
of causal power and latency because it leads to an interesting
interaction effect, depicted in Fig. 5. When the target cause’s
latency is high (G5), our model predicts that ratings in the
high-power condition should be lower than in the low-power
condition. One reason is that the product that is subtracted
from wC in the high-power condition is so large that the nu-
merator becomes smaller (0.83− 0.83 · 0.83 · 0.99 = 0.15)
than in the low-power condition (0.5−0.5 ·0.5 ·0.99 = 0.25).
Furthermore, the denominator is smaller in the low-power
condition than in the high-power condition (0.5+ 0.5− 0.5 ·
0.5 = 0.75 vs. 0.83+0.83−0.83 ·0.83 = 0.97), which means
that the numerator in the low-power condition is increased
more strongly than in the high-power condition. When target
cause’s latency is low (G1), by contrast, the product that is
subtracted in the numerators becomes small, and our model
predicts that we should see a reversed order of judgments. Fi-

nally, our model also predicts a main effect of causal latency:
causes that tend to precede the efficacy of their competitors
should receive higher singular causation ratings than causes
whose competitors tend to preempt them.

Fig. 5 also shows the predictions of the power PC model
(Eq. 2). As this model is blind to causal latency information,
it predicts only a main effect of causal power. Our model does
not predict a main effect of causal power.

Participants
One hundred and sixty subjects (Mage = 38.14, SDage =

12.20, 116 females) who had at least an A-level degree and
who were native English speakers were recruited via Prolific
(www.prolific.ac). They were paid £ 1.20 for participation.

Design, Materials, and Procedure
Subjects were randomly assigned to one of four conditions

(n = 40) that resulted from a 2 (causal power: wC = wA =
0.83 vs. wC = wA = 0.50) × 2 (causal latency: G1 vs. G5)
between-subjects design.

The materials and procedure were largely identical to those
of Exp. 1, with the following exceptions: first, we added in-
formation about the probabilistic causal nature of the towers
to the instructions. Participants read that pigeons might get
lost on their way to the palace and that it would hence be im-
portant to learn the pigeons’ arrival rates. Secondly, the learn-
ing task was modified such that causal power information
could be conveyed. Other than in Exp. 1, we showed subjects
24 pigeons per tower, to ensure that all participants observe a
sufficient number of “successful” pigeons to be able to learn
the causal latencies. Subjects in the high-power condition
observed 20 successful pigeons per tower, whereas subjects
in the low-power condition observed 12 successful pigeons
per tower. The flight durations corresponded to 12 or 20 per-
centiles of the respective latency distributions. Whenever a
pigeon failed to reach the palace, the words “Pigeon probably
lost” were displayed five seconds after the pigeon had been
sent out, which corresponded to the 99.9th percentile of G5.

The test questions were identical with the ones in Exp. 1.
Additionally, on a separate screen we asked participants to es-
timate the causal powers of the towers, as we wanted to con-
trol for the possibility that subjects’ representations of causal
power might be influenced by causal latency. For example,
the tower “North” participants were asked the following ques-
tion: “Based on what you have learned: how many out of 10
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Figure 5: Model predictions and results (mean singular causation
ratings) of Exp. 2. Error bars denote 95% bootstrapped CIs.

letter pigeons sent from Tower ‘North’ would make it to the
palace?”. Ratings were provided on an eleven-point scale (0
to 10). The test questions were presented in counterbalanced
order.

Results and Discussion
The results are summarized in the right panel of Fig. 5. The

singular causation ratings followed the pattern predicted by
our model, whereas the power PC model of causal attribu-
tion cannot explain the results. When α was high, ratings
in the low-causal power condition were higher than those
in the high-causal power condition. The reversed pattern
was obtained when α was low. A planned contrast testing
the predicted interaction was significant, t(156) = 2.68, p <
.01,r = .16. Furthermore, singular causation ratings were
overall higher when α was low. A planned contrast test-
ing this predicted main effect was also significant, t(156) =
10.47, p < .001,r = .63. There was no main effect of causal
power, t(156) < 1.00.

The additional causal power ratings showed that partic-
ipants’ causal power representations were not distorted by
the different causal latencies. In the low-causal power con-
dition, the mean ratings for the fast and slow tower were
M f ast = 5.18 (SD f ast = 1.09) and Mslow = 5.30 (SDslow =
1.16). In the high-causal power condition, the mean rat-
ings were M f ast = 7.55 (SD f ast = 1.61) and Mslow = 7.69
(SDslow = 1.97). A mixed ANOVA with “causal-power
query” as within-subject factor yielded a main effect only for
causal power, F(1,156) = 121.42, p < .001,η2

G = .39, con-
firming that subjects in the high-causal power condition gave
higher causal power ratings than subjects in the low-causal
power condition. Importantly, there was neither a main effect
of causal latency, F(1,156) < 1, nor an interaction effect of
causal latency and causal power, F(1,156) < 1. We can thus
rule out that the results were driven by different causal power
representations in the different latency conditions.

General Discussion
To assess singular causation, more than just the causal

powers of the potential causes need to be considered. Even
when a cause factor is sufficient to generate the effect, it is
still not the actual cause of the outcome if it was preempted
by a competitor. To asses the probability of preemption, tem-
poral information about the potential causes needs to be con-
sidered in combination with information about their power.
We have discussed the roles of two relevant types of temporal

information: the difference of the onset times of the compet-
ing causes, and the latencies with which they generate their
effects. To model the latencies of causes we used gamma
distributions, which allows us to estimate the size of the α
parameter in our model. The results of two experiments that
we presented were explained well by our model, but not by
Cheng and Novick’s (2005) power PC model of causal attri-
bution which neglects temporal information.

The type of situation we considered here represents only
a subset of possible cases. For example, unlike in our sce-
nario reasoners often experience the latency between the tar-
get cause and outcome. Consider, for instance, a situation in
which a person takes an aspirin and after twenty minutes gets
relief from her headaches. In such cases, the experienced de-
lays need to be used to estimate α. We plan to use dynamic
test scenarios in future experiments to test such contexts.

Another noteworthy characteristic of our test scenario was
that all potential causes of the effect were actually observed.
In most real-world situations, however, reasoners observe
only a subset of the potential causes. Other than in our test
scenario, reasoners often are confronted with uncertainty con-
cerning the presence of alternative causes. Although we have
not considered these situations here, our model can be ap-
plied to them, too. For example, in situations in which only
the target cause is observed but not alternative causes, infor-
mation about the temporal distribution of the effect in the ab-
sence of the target cause needs to be considered to estimate
α. This temporal distribution can be modeled with exponen-
tial functions (see, e.g., Bramley et al., in press). We plan to
investigate such situations in future studies.
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Abstract 

Causal knowledge is not static, it is constantly modified based on new evidence. The 

present set of five experiments explores one important case of causal belief revisions, 

causal interpolations. The prototypic case of an interpolation is a situation in which we 

initially have gathered knowledge about a direct causal or covariational relation between 

two variables but later become interested in the mechanism linking these two variables. 

Our key finding is that interpolations tend to be misrepresented, which leads to the 

paradox of knowing more. The more we know about the mechanism, the less predictable 

we seem to find the effects (i.e., weakening effect). In all experiments we found that 

despite identical learning data the predictive probability linking two variables C and E 

(C→E) was rated reliably higher than the same predictive probability when a component 

of the mechanism (M) was interpolated (e.g., C→M→E).  Our general theoretical 

explanation behind this stable weakening effect is that people have difficulties 

distinguishing between interpolations and lengthening scenarios (and other 

augmentations) in which causal variables are added on the effect side of the chain. 

Several experiments are presented that support specific predictions derived from this 

theory. 

 
 
 
Keywords: causal reasoning, belief revision, probabilistic reasoning, causal Bayes nets  
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1. Introduction: Knowledge Revision in Everyday Causal Reasoning 

Research focusing on causal reasoning generally explores how people acquire and 

use knowledge about relations between causes and effects. Most theories start with the 

assumption that the world can be categorized into a given set of variables that can be 

arranged in a causal network. Experiments in this field often focus on the question of 

how people learn and reason about this set of causal variables (see Waldmann, 2017, for 

overviews).  

There is little research about the dynamic process of extending and deepening our 

knowledge (but see Bramley, Dayan, Griffiths, & Lagnado, 2017). We do not only learn 

about causal relations between given variables, we also acquire knowledge about new 

variables or acquire deeper knowledge about the mechanisms mediating the observed 

causal relations. Dynamic causal belief revision is a hallmark of scientific but also of 

everyday reasoning. For example, we may first learn that smoking leads to a disease, that 

a specific drug relieves our headache, or that pressing a switch turns a device on, but 

later we may become more curious and try to figure out how these causal contingencies 

are actually generated by underlying mechanisms. This process may involve the 

discovery of additional variables and the extension of a given causal network. 

The process of re-representing our causal knowledge into more elaborate causal 

models can be described in various ways. A popular theoretical approach of how to 

represent causal knowledge are causal Bayes nets, which represent this knowledge as a 

set of variables linked by directed causal arrows (see Fig. 1 for an example) (see Rottman 

& Hastie, 2014; Rottman, 2017; Waldmann & Hagmayer, 2013, for reviews). The basic 

building block of causal Bayes nets are direct causal relations between a cause and an 
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effect, but these direct relations can be combined into indirect ones forming causal 

chains or more complex kinds of networks (see Fig. 1).  

 

Figure 1. Example of a causal Bayes net depicting the causal relations between five variables, A, B, C, 
D, E. 

In a given stage of our knowledge acquisition process, we may have acquired knowledge 

about a specific causal network. However, even when we are confident that our model is 

adequate and have collected data that support our assumptions about the structure of the 

model and the strengths of the causal relations, we may still want to elaborate the model 

later by adding variables. 

It is important to note that the direct causal relations within a causal model are only 

direct relative to the chosen set of variables. Causal models are frame-relative, according to 

the analysis of Spohn (2012). It is always possible to turn a direct causal relation into an 

indirect one by interpolating new variables that mediate between the previously directly 

linked ones. Within causal Bayes net representations, the newly formed causal chains can 

then be considered representations of our current understanding of the mechanisms 

mediating the causal contingencies we already know from previous observations. In the 

present research we will study how people reason in situations of causal belief revision. We 

ciii
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will mainly focus on causal chains, but later we will demonstrate that our findings can be 

generalized to more complex structures. 

1.1 Revising Beliefs about Causal Chains 

There are various ways in which knowledge about a causal chain can later be revised: 

First, it could turn out that the causal directions within a chain do not adequately represent 

the causal situation. Thus, one possibility for revision concerns the structure of the causal 

model. Second, given that causal strength is estimated based on a limited set of data it may 

later be discovered that the strength estimates are distorted or that the researcher failed to 

control for relevant confounds when estimating strength. Third, new relevant variables 

connected to the known network could have been discovered in the meantime, which lead 

to an augmented network. In the case of causal chains, adding variables may lead to 

lengthening of the chain. Fourth, mechanisms mediating between variables could later be 

discovered, which leads to the interpolation of further variables.  

As an example for an interpolation, our knowledge acquisition process may start with 

observations that bolster our belief in a stable causal contingency between smoking and 

lung cancer, for example. Therefore, in an initial causal model representation smoking would 

play the role of a direct cause of lung cancer. Later we may become interested in how this 

relation is mediated. This may lead to a more elaborate physiological representation turning 

the direct into an indirect causal relation (e.g., smoking → genetic alterations → lung 

cancer). The key question of the present research concerns the question of how extensions 

of causal knowledge about chains affect our beliefs in the statistical relations between 

causal variables. We will in the introduction focus on the two cases of extending causal 

chains, lengthening and interpolating. Our experiments will then focus on interpolations, 

which have not yet been studied in detail. 
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1.1.1. Lengthening of Causal Chains 

Lengthening a given chain by adding variables at the beginning or end of the chain 

typically leads to a weakening of probabilistic relations between the given and new variables 

proportional to the length of the distance between the variables within the newly 

discovered chain.  A key assumption here is that the initial chain stays invariant, additional 

variables are just added at one of the outer sides. Imagine, for example, that a direct causal 

relation had been discovered between the variable JPH3 (a fictitious mutation of a gene) and 

Hepatocitosis (a fictitious disease) (see Fig. 2A). Since other known and unknown outside 

variables typically additionally affect causal relations, the causal relation between JPH3 and 

Hepatocitosis will most likely be probabilistic on the observational level.  

There are many ways to measure causal strength, but a standard method to assess the 

strength of the causal relation is by using the contingency measure ∆P (see, for example, 

Perales, Catena, Cándida, & Maldonado, 2017). ∆P equals the difference between P(e|c) - 

P(e|¬c)(with e representing the effect, c the target cause, and ¬c the absence of the cause).  

∆P can range between -1 (for a perfectly inhibitory relation) and +1 (for a deterministic 

generative relation).  

 

Figure 2. Illustration of the lengthening of an initial causal chain (A) into a causal chain with an 
additional effect (B).  
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Figure 2B shows an example of a lengthening of the chain shown in Figure 2A. The chain 

contains now three variables. It is assumed that it has been discovered that Hepatocitosis 

directly causes another disease, Lipogastrosis. Assuming that the Markov condition holds, 

which in this case means that the new probabilistic relation between Hepacitosis and 

Lipogastrosis is independent of whether JPH3 is present or absent (see Mayrhofer & 

Waldmann, 2015), the following relation holds:  

∆PJPH3-Lipo = ∆PJPH3-Hepa × ∆PHepa-Lipo    (Equation 1). 

The equation entails that the contingency between JPH3 and Lipogastrosis is only equal 

to the two contingencies between the two directly linked variables (i.e., JPH3-Hepatocitosis, 

Hepacitosis-Lipogastrosis) when these relations are deterministic, otherwise a weakening 

effect is expected. The further the distance between variables (i.e., the longer the chain), the 

weaker the contingency between JPH3 and the final effect is expected to be. It is important 

to note that this effect is based on the assumption that variables are added to otherwise 

invariant chains. The exact functional form of the probabilistic relations between the three 

variables will of course be different when the Markov condition does not hold. But since our 

focus will not be on lengthening but rather interpolations, we will not pursue the role of this 

constraint further. 

Psychological research has shown that reasoning about causal chains is consistent with 

this multiplicative lengthening constraint (Equation 1)(Ahn & Dennis, 2000; Baetu & Baker, 

2009; Jara, Vila, & Maldonado, 2006). Presented with individual pairwise causal links that are 

later combined into a three-variable chain, subjects tend to believe that the initial cause 

indirectly causes the final effect, thus demonstrating a belief in causal transitivity. Moreover, 

their judgments are generally consistent with the multiplication constraint expressed in 

Equation 1. Interestingly, reasoning about chains even tends to express a transitivity bias 
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when the presented data actually violate the Markov condition and therefore are 

inconsistent with transitive chains (v. Sydow, Hagmayer, Meder, & Waldmann, 2010; v. 

Sydow, Hagmayer, & Meder, 2016). There seems to be a tendency to assume the validity of 

the Markov constraint even when it is violated, at least in these tasks. 

Another study testing whether causal reasoning is consistent with the normative 

predictions of Bayes nets was conducted by Bes, Sloman, Lucas, and Raufaste (2012). The 

study investigated a number of causal models and showed judgment biases that can be 

better explained by a theory of explanatory ease than by Bayes nets. However, some of the 

results seem consistent with Bayes nets. In their Experiment 2, Bes et al. presented three 

causal variables that were sufficiently neutral so that they could be arranged in different 

causal models through verbal instructions. Moreover, some vague information was given 

about the strength of the covariation between the three variables suggesting that for all 

variable pairs 40% have both high values, another 40% have both low values, and 20% have 

mixed values. After this information, causal model instructions were provided. For our 

project, the chain conditions are the most relevant ones. In one condition, the predictive 

direct chain condition, A was the direct cause of B and B of C (A→B→C), whereas in one of 

the other conditions, the indirect predictive chain condition, B was indirectly caused by A, 

A→C→B. As a test question measuring probabilistic intuitions, subjects were requested to 

respond to rate predictive conditional probabilities of effects conditional on the presence of 

a cause using a rating scale ranging from 0% to 100% (e.g., P(B|A)). 

The key finding was that despite identical data the conditional probability of B given A 

was rated significantly higher when the instructed causal chain model linked them directly 

(direct predictive causal chain) than when they were indirectly linked (indirect predictive 

causal chain).  

cvii
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This finding was replicated in a follow-up study (Experiment 3) in which, prior to causal 

model instructions, trial-by-trial data were presented showing individual cases. In a long 

learning condition, 60 trials were presented. In 24 cases all variables had high values, in 

another 24 they were all low, the rest of the patterns (with mixed values) were presented 

twice each. In a short learning condition, only 5 cases were presented with 2 all being high 

and 2 all being low (and one additional random mixed case). Again, the indirect causal chain 

yielded lower ratings for the probabilistic relation between A and B than the direct causal 

chain. This effect was not sensitive to the length of the training phase.  

In sum, in both experiments Bes et al. (2012) presented evidence consistent with a 

lengthening effect. Given the symmetry of the statistical relations between the three 

variables, this study provides further evidence in the belief consistent with a transitivity 

assumption although the data violate the Markov condition so that they are actually 

ambiguous with respect of the underlying causal model. These results along with the studies 

by v. Sydow and colleagues (2010, 2016) seem to indicate that people focus on the structure 

of causal models rather than data patterns (e.g., sample size; Markov condition).  

1.1.2. Interpolation in Causal Chains 

In the previous section we have shown that in lengthening scenarios subjects tend to 

expect a weakening of probabilistic dependencies with increased distance within the causal 

chain. People even assume weakening with longer chains when the formal preconditions 

(i.e., Markov condition) do not hold.  

Our main focus in the present research will be another type of extension of chains that is 

generated by interpolations of mediating variables. Interpolations are frequent in contexts 

of causal discovery of mediating mechanisms. Reversing the revision process in the example 

from the last section, we may, for example, first have obtained reliable covariation 

APPENDIX G. STEPHAN, TENTORI, PIGHIN, AND WALDMANN (IN
PREPARATION) cviii



                                                                                 Interpolating Causal Mechanisms        10 

knowledge indicating that JPH3 causes Lipogastrosis. In a causal model we would represent 

this as a direct causal relation between the two variables (see Fig. 3A), which can be used for 

predictions, diagnoses, or causal interventions. However, later we may want to know how 

JPH3 exerts its influence on Lipogastrosis. We may then learn that the causal relation is 

mediated within a causal chain by Hepatocitosis. Ordinally we see again a three-step chain, 

like the one in Figure 2B, that appears longer after the interpolation, but this effect is due to 

a very different process than the lengthening we obtain when adding variables at the 

beginning or end of a chain. Here, a previously direct causal relation is turned into an 

indirect one by zooming in on the causal relation and adding an intermediate step. Our key 

question is whether interpolations lead to a similar weakening effect as cases where a given 

chain is lengthened at the outer sides of the chains. This is a novel question that has not 

been addressed in the literature so far. 

 

Figure 3. Example for the lengthening of causal chains resulting from the interpolation of variables. 

 

1.2. The Paradox of Knowing More 

To preview the results of our research presented later, we have observed a stable 

weakening effect also in causal interpolations. For example, once reasoners are informed 

that the causal relation between JPH3 and Lipogastrosis is in fact mediated by the variable 

Hepatocitosis, they tend to assume that the previously observed probabilistic dependency 

cix
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between JPH3 and Lipogastrosis should now have become weaker. Interestingly, we have 

discussed such interpolation scenarios with colleagues from psychology, philosophy, and 

computer science, and many had the initial reaction that such a weakening is perfectly 

rational. We actually did initially not agree about this issue among ourselves. Later, upon 

reflection, most people often changed their minds, though. We found these intuitions by 

experts interesting and wanted to explore how they can be explained.  

1.3. Is A Weakening Effect Rational in Causal Interpolations? 

Although our focus will be on a psychological explanation of the weakening effect in 

interpolations, it is an interesting question whether weakening is a fallacy or can be 

defended as a rational response. In the past years, a number of phenomena that initially 

appeared to reflect irrational biases were, more or less convincingly, re-interpreted as 

results of rational processes (e.g., Costello & Watts, 2014; Juslin, Nilsson, & Winman, 2009; 

Hertwig & Pleskac, 2010; Kareev, 2000). Can the weakening effect similarly be explained as a 

rational response?  One can address this question from a metaphysical or an epistemic point 

of view, which we will discuss in turn.  

Metaphysical Analysis. From a metaphysical point of view the answer seems clear. As long as 

we stay in the same context as the learning situation, interpolations of variables should not 

change the contingencies between the observed variables. One popular philosophical 

approach to represent causal relations is by assuming that the causal events are connected 

by a spatio-temporally continuous causal line on which some kind of conserved quantity 

(e.g., momentum) (e.g., Dowe, 2000) is transferred in an active causal relation. Within this 

framework, measured causal variables represent abstracted events on this causal line. It 

seems self-evident that further measurements along this line should not change the 

relationship between the initially chosen cause and effect variables.  
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Causal lines cannot only represent deterministic relations, for which no lengthening 

effect is predicted anyway. They can also represent more complex models with additional 

unobserved lines impinging on the observed one. In the Bayes net literature, it has been 

shown that probabilistic relations can be re-represented as deterministic chains with hidden 

enablers or preventers (i.e., quasi-deterministic networks) without loss (see Spirtes, 

Glymour, & Scheines, 2000; Pearl, 2000). Measuring additional variables on a chain 

embedded in a quasi-deterministic network should also not change the initially represented 

causal relation, according to our intuition. 

Another way to demonstrate that interpolations should not change contingencies can be 

seen in Figure 4, which represents a mechanism as a Bayes net representation of a causal 

chain. Figure 4A shows the representation of the direct causal relation between JPH3 and 

Lipogastrosis at some time point, t1. Now assume, we later discover at t2 that Hepatocitosis 

mediates this relationship (see Fig. 4B). Where was Hepatocitosis at t1? Again, a natural 

assumption is that Hepatocitosis already mediated the relation between JPH3 and 

Lipogastrosis at t1, this mediation relation was just unknown to us at t1. Discovering it at t2 

should not change anything, as long as we do not change into a different context with 

different variables affecting the covariation (see General Discussion). In fact, if we assume 

that in the unknown underlying Bayes net (let’s call it God’s Bayes Net), there is an infinite 

number of mediating variables between JPH3 and Lipogastrosis that await discovery (Fig. 4B 

shows a fragment), then further discoveries (e.g., Fig. 4C) should also not change the 

strength of the relation between the initially discovered two variables. 
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Figure 4. Illustration of the process of causal mechanism discovery within God’s Bayes Net. 

 

Epistemic Analysis. Another possible path to justify the weakening effect might focus on the 

fact that the initial observations are typically unreliable. Contingency or other kinds of 

probability estimates rely on samples so that a specific amount of uncertainty is always 

attached to these estimates. In fact, many of the attempts mentioned above to explain 

apparent biases and fallacies as rational argue that they are rational responses to 

uncertainty.  

We do not believe that the weakening effect in causal interpolations can be explained as 

a rational response to uncertainty in our experiments, however. For one, in our experiments 

we present a sufficiently large sample that should allow for fairly reliable estimates. 

Moreover, we were using causal strength parameters that were sufficiently far away from 

the extremes 1 and 0, so that no ceiling or floor effects are to be expected. If uncertainty is 

construed as unreliability of the measurement, a symmetric confidence interval is expected 

which should lead to a belief in a range of possible true values which include lower as well as 

higher values. 

Uncertainty could also be construed as a tendency to incorporate a prior in the estimate. 

However, in previous causal research strength priors have been postulated that tend toward 

sufficiency or necessity rather than lower values than the ones we used, which would 

APPENDIX G. STEPHAN, TENTORI, PIGHIN, AND WALDMANN (IN
PREPARATION) cxii



                                                                                 Interpolating Causal Mechanisms        14 

actually predict more extreme estimates (see Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008; 

Mayrhofer & Waldmann, 2016; Yeung & Griffiths, 2011, 2015).  

A weakening effect would on this account only be predicted if the strength prior refers to 

individual direct links regardless of whether the causal chain is the product of lengthening or 

interpolation. But collapsing these two processes clearly misrepresents these two very 

different situations and is therefore not normative. In fact, we later present a related model 

as a psychological explanation of the weakening effect in causal interpolations (see sections 

1.4, 4, 5).  

Finally, and most importantly, our key manipulation is whether we inform subjects after 

they have initially observed a contingency between two variables that researchers had 

discovered a mediating variable or whether the researchers believed that the two covarying 

variables are directly linked. In none of the experiments we presented any new data about 

the causal variables, which could disconfirm the initial estimate. Even if subjects attached 

uncertainty to the initial estimate, and had for some reason a tendency to provide more 

conservative estimates for what they have seen, there is no normative statistical reason to 

revise the probability estimates differently in the two conditions (direct vs. indirect chain), as 

long as they are the result of interpolation. A possible uncertainty about the initial estimate 

should not be changed by verbal instructions about the underlying mediating causal model.  

The Paradox of Knowing More. Another argument supporting the claim that a weakening 

effect may not be rational in causal interpolations, refers to an interesting counterintuitive 

implication of a generalization of this effect, which we express by using the label “paradox of 

knowing more.” Under the assumption of a rational weakening effect, the longer the chain 

becomes, that is, the more mediating steps we discover about the causal relation, the 

weaker the dependencies would become. This does not sound sensible. The better we 
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understand causal mechanisms in the world, the better we should be able to make 

predictions, diagnoses, or interventions. An increase of knowledge should not lead to 

increased unpredictability of the world. 

1.4. Psychological Accounts of the Weakening Effect 

Regardless of whether a weakening effect is considered rational or not in causal 

interpolations, the question still remains how a psychological theory could explain it. Thus, 

the main focus of our research is testing psychological factors that might underlie the 

weakening effect in causal interpolations. We will here only briefly preview our hypotheses 

and the experiments; more detailed accounts will be given in the introductions of the 

studies.  

The experimental series will start with three studies in which we set the stage for later 

studies by demonstrating the existence of the weakening effect (Experiments 1, 2). We will 

test the effect using various types of variables. Next, we will study possible psychological 

factors underlying the weakening effect. The factors we test are not mutually exclusive, they 

are interdependent. 

Explicit vs. Implicit Representation of Enablers and Disablers. The first hypothesis assumes 

that causal interpolations lead to longer chains with more variables, which potentially 

highlights multiple possibilities of how things can “go wrong.” Subjects might be led to 

consider enablers of mediating variables which might be missing, disablers which might be 

present, or alternative causes. If, for example, we just represent smoking and lung disease 

we might consider factors additionally influencing lung disease. If we represent the relation 

mediated by genetic alterations, for example, then we might consider additional factors 

influencing genetic alterations. Of course, normatively these additional factors do not arise 

simply because we have discovered the relevance of the mediating factor, for example 
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genetic alterations. They should already be causally effective before we made this discovery, 

and be reflected in the initial simpler causal model, at least implicitly. But psychologically it 

may make a difference whether we explicitly represent the mediating variables along with 

potential enablers, disablers, and alternative causes, or whether these moderating variables 

only implicitly affect the observed causal relationship. We will focus on disablers as an 

example for our hypothesis and test it by manipulating whether disablers are explicitly 

mentioned or not (i.e., explicit vs. implicit representations) (Experiment 3). 

Confusing Lengthening and Interpolations. A second hypothesis we are going to test assumes 

that people tend to be sensitive to the length of chains but do not clearly differentiate 

between a situation in which a pre-existing chain was lengthened and one in which a chain 

was extended by interpolating additional variables. On the surface, a chain with several 

variables looks the same, regardless of its history (see Figure 5).  

 

 

Figure 5. Illustration of how lengthening and interpolation might lead to the same representation. A) 
shows a causal chain at t2 following a discovery of new factors downstream of the initial effect. B) 
shows the same causal chain at t2 but this time obtained through the interpolation of variables 
between the initial cause and final effect. 
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Since in lengthening scenarios probabilistic relations normatively tend to weaken, we may 

assume the same for chains of the same length that are generated by interpolations. One 

prediction that this hypothesis entails is that reasoners should be expected to assume that 

the contingencies linking known adjacent events in a chain stay invariant regardless of how 

long the chain is. The causal strengths of the links of the chain prior to lengthening do not 

change when variables are added. Of course, further links might be added with stronger or 

weaker causal strengths but their strengths are again independent of the final length of the 

chain in lengthening scenarios.  

By contrast, when new variables are interpolated, the causal contingencies 

connecting the directly linked variables should systematically become stronger. This is a 

direct consequence of Equation 1, the product rule. If, for example, ∆PJPH3-Lipo equals 0.7, 

then the causal strengths of the mediating links should become on average stronger, the 

more variables are interpolated (see section 5). Thus, if interpolations are misrepresented as 

lengthening, causal strength estimates for the individual links should be observed that stay 

invariant independent of the length of the chain. If they stay invariant, then their product 

would deviate further and further away from 0.7 the longer the chain becomes, which would 

lead to a weakening effect. This hypothesis will be tested in Experiment 4. 

Interpolating Complex Networks. Our main focus in the present research will be on causal 

chains. Here we have a clear contrast between a normative weakening effect observed in 

lengthening scenarios, and a non-normative weakening effect observed in interpolations. 

How about interpolating more complex network structures between two variables (cf. Figure 

1)? A specific target relation (e.g., JPH3-Lipogastrosis) might turn out to be mediated by a 

complex network with multiple cause-effect relations between the two initial variables. Here 

we also have an interesting asymmetry.  
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In situations in which an existing causal relation is extended by discovering a network 

of variables surrounding this causal relation (corresponding to a lengthening of chains), 

predictions about probabilistic relations depend on the structure and parameters linking the 

network variables. By contrast, the strength of the initially observed causal relation should 

again stay invariant if a network is interpolated between the two variables. Regardless of the 

complexity and the parameters connecting the mediating variables, the causal contingency 

should not systematically change, for the same reasons why we do not expect such a change 

in simple chains. However, similar to our findings with causal chains, we expect that causal 

properties of the interpolated network will systematically cause revisions of the estimates 

concerning the initially observed two variables. This hypothesis will be tested in Experiment 

5. 

2. Experiment 1 

The goal of Experiment 1 was to set the stage for the project by testing whether we 

will find a weakening effect after causal interpolations. We generally are using fairly abstract 

materials to avoid distortions by prior knowledge. Therefore, the causal variables refer to 

fictitious unknown entities. Experiment 1 tests a paradigm we are using in all other studies. 

In Phase 1, subjects are presented with trial-by-trial learning information about two 

covarying variables. This learning phase allows subjects to acquire knowledge about the 

degree of covariation between the two variables suggesting a causal link. Subsequently, 

subjects are either told that scientists had discovered that the two variables are directly 

causally related or that scientists had discovered that the two observed variables are in fact 

indirectly related, with a newly discovered variable mediating the two variables on a causal 

chain. No new data are shown in Phase 2. Then the final test question requests subjects to 

estimate the conditional probability of the effect variable given the cause variable referring 
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to the two variables shown in the initial learning phase (see Bes et al., 2012, who have used 

a similar test question). If we observed a weakening effect, the conditional probability 

estimate is expected to be lower in the indirect than the direct condition, despite identical 

learning data in both conditions. 

2.1 Method 

2.1.1. Participants 

One hundred and forty subjects (100 female, one subject indicated to be neither male 

nor female,  𝑀𝐴𝑔𝑒= 36.69, 𝑆𝐷𝐴𝑔𝑒= 12.50) were recruited via the online platform Prolific 

(www.prolific.ac). This sample size allows it to detect a medium effect size of d = 0.50 with 

more than eighty percent probability. All subjects were native English speakers and had at 

least an A-level degree. They were paid £ 0.70 for their participation.  

2.1.2 Design, Materials, and Procedure 

As cover story we used a fictitious scenario according to which biologists were interested 

in studying the statistical relation between the mutation of the gene JPH3 (J) and the gastro-

intestinal disease Lipogastrosis (L), which is characterized by an excessive accumulation of 

fats in the digestive tract. Subjects were further instructed that the biologists had conducted 

a study in which they examined two random samples of mice, one consisting of mice 

carrying the mutation and a second one not carrying the mutation. We informed subjects 

that the results of the biologists’ study will be presented in serial order and that their task 

will be to examine the results thoroughly and not take any notes during the study. Before 

subjects could proceed to the learning task, they had to pass an instruction check involving 

three questions.  

The contingency that we presented to subjects in the subsequent learning task is shown 

in Table 1. The probability of Lipogastrosis given a mutation of JPH3 was P(L|J) = 0.75 and 
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the base rate of Lipogastrosis in the absence of Lipogastrosis was P(L|¬J) = 0.21. Hence, the 

contingency was ∆P = 0.54.  

 

Table 1 

Contingency presented to subjects in Experiment 1 
 

 L ¬ L P(L|J) P(L|¬J) ∆P 

J 18 6 
.75 .21 .54 

¬ J 5 19 

 

As learning task, we used a classic trial-by-trial observational learning task in which 

the forty-eight cases summarized in Table 1 were presented to participants on a 

computer screen in random order. The learning phase had to be initiated by a click on an 

“Examine Results” button presented at the bottom of the screen. An example of what 

the screen looked like during the learning phase is shown in Figure 6. The presence of 

either factor (J or L) was indicated by a yellow text box, while the absence of a factor (¬J 

or ¬L) was indicated by a gray text box. The case numbers were displayed in the upper 

left corner of the screen. Each case was displayed for four seconds followed by a white 

mask displayed for 500 ms. The duration of the learning task was roughly three minutes. 

 

 

Figure 6. Illustration of the trial by trial learning task used in Experiment 1. 

cxix
APPENDIX G. STEPHAN, TENTORI, PIGHIN, AND WALDMANN (IN

PREPARATION)



                                                                                 Interpolating Causal Mechanisms        21 

After subjects had finished the learning task, they were given information about the 

causal model assumed to underlie the observed relation between JPH3 and Lipogastrosis. 

Depending on condition, subjects were either instructed that JPH3 and Lipogastrosis were 

directly causally related or that they were indirectly causally related in a chain containing 

one interpolated variable between JPH3 and Lipogastrosis. In the direct causal relationship 

condition, subjects were presented the following text along with the illustration shown in 

Figure 7.   

“Please read the following new information: 
The biologists later found out that JPH3 and Lipogastrosis are in fact directly causally 
related as illustrated in the figure below. That is, the JPH3 mutation can sometimes 
lead to Lipogastrosis. This is indicated by the arrow (with a + sign) that goes from 
JPH3 to Lipogastrosis. Other factors can also influence the disease.” 
 

 

Figure 7. Illustration of the causal model shown to subjects in the direct causal relationship condition 
of Experiment 1. 

Subjects in the indirect causal relationship condition were presented the following 

text together with the illustration shown in Figure 8.   

“Please read the following new information: 
The biologists later found out that JPH3 and Lipogastrosis are in fact indirectly 
causally related as illustrated in the figure below. Specifically, the JPH3 mutation can 
sometimes lead to Hepatocitosis, an abnormal occurrence of hepatic enzymes. This is 
indicated by the arrow (with a + sign) that goes from JPH3 to Hepatocitosis. Finally, 
Hepatocitosis can sometimes lead to Lipogastrosis. This is indicated by the arrow 
(with a + sign) that goes from Hepatocitosis to Lipogastrosis. Other factors can also 
influence the disease.” 
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Figure 8. Illustration of the causal model shown to subjects in the indirect causal relationship 
condition of Experiment 1. The interpolated variable was either Hepatocitosis, Cholestocitis, 
Spirillicitis, or Paracelocitis. 

We used different labels for the interpolated variable of the chain. Subjects either 

learned that the interpolated variable was Hepatocitosis (see Fig. 8), described as an 

abnormal increase in hepatic enzymes, or Cholestocitis, described as an abnormal 

occurrence of cholesterol, or Spirillicitis, described as an infection colonizing the gut, or 

Paracelocitis, described as a dysfunction of the process involved in fat metabolism. 

After the participants had read the causal model information, they proceeded to the 

test screen. Subjects read that the biologists were now inspecting a new mouse that they 

had randomly sampled and of which they had noticed that it carries the mutation. Subjects 

in the direct causal relationship condition were shown the illustration depicted in Figure 9.  

 

Figure 9. Illustration shown during the inference phase in the direct causal relationship condition of 
Experiment 1. 

Subjects in the indirect causal relationship condition were shown the illustration 

depicted in Figure 10, with the interpolated variable being the one presented during the 

structure information phase.  
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Figure 10. Illustration shown during the inference phase in the indirect causal relationship condition 
of Experiment 1. The interpolated variable was either Hepatocitosis, Cholestocitis, Spirillicitis, or 
Paracelocitis. 

Subjects were then asked to estimate the predictive probability of Lipogastrosis given 

JPH3, P(L|J). The phrasing of the test question, which referred to the image shown in Figures 

9 and 10 was: “What do you think is the probability that the mouse also has Lipogastrosis?” 

Subjects provided their ratings on a slider ranging from 0 to 100 with the endpoints labeled 

“It is certain that this mouse does not have Lipogastrosis” and “It is certain that this mouse 

has Lipogastrosis.” 

2.2 Results and Discussion  

The results are summarized in Figure 11. As can be seen, subjects in the direct causal 

relationship condition gave ratings (M = 68.47, SD = 16.70) that were close to the normative 

value of P(L|J) = 0.75. As can also be seen, the ratings in the indirect causal relationship 

condition (M = 56.30, SD = 21.58) were lower than those of the direct causal relationship 

condition, as predicted. An independent t-test confirmed that the observed difference was 

significant, t (138) = 3.73, p < .001, d = 0.63.  

The results of this experiment indicate that interpolating causal variables between two 

covarying causal variables changes reasoners’ representation of the observed probabilistic 

relation. We observed a “weakening effect” in the indirect compared to the direct causal 

relation although the interpolated variable was introduced as a mediator between the two 

variables rather than representing an additional variable in a lengthening scenario.  
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Figure 11. Results (means and 95% CIs) of Experiment 1. 

3. Experiment 2 

A characteristic of Experiment 1 was that the interpolated variables and the effect 

variable were always described as physiological: they were described as a particular 

symptom or a particular disease involving dysfunctional physiological processes. One could 

therefore argue that our results may be restricted to this kind of mechanism. To increase 

generality, the goal of Experiment 2 was to test if the weakening effect interacts with the 

type of variables that are being used.  

We constructed three different versions of the cover story used in Experiment 1, 

varying the level of description on which the variables following the root cause are 
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described. We contrasted the physiological level with a genetic and a molecular level. 

Furthermore, we introduced two interpolated variables in the indirect causal relationship 

condition instead of one. 

3.1 Method 

3.1.1. Participants 

Five hundred and ten subjects (242 female, 265 male, three subjects indicated neither 

male nor female,  𝑀𝐴𝑔𝑒= 33.29, 𝑆𝐷𝐴𝑔𝑒= 14.73) were recruited via the online platform Prolific 

(www.prolific.ac). This sample size allows it to detect small main effects and interactions of d 

= 0.3 with more than eighty percent probability. We planned for a small effect this time 

because we were uncertain whether our new level of description variable might influence 

the results. All subjects were native English speakers and had at least an A-level degree. They 

were paid £ 0.70 for their participation.  

3.1.2. Design, Materials, and Procedure 

The design was a 2 (causal model: direct vs. indirect causal relationship) × 3 (level of 

description: physiological vs. genetic vs. molecular) between-subjects design. The cover 

story and the procedure were identical to the ones in Experiment 1, with the exception that, 

depending on condition, the interpolated variables (in the indirect conditions) and the effect 

Figure 12. Causal graphs presented to subjects in Experiment 2 after the learning phase. In the direct 
causal relationship condition, subjects were presented the structure shown in a). In the indirect causal 
relationship condition, subjects were presented the structure shown in b). 
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variable (in all conditions) were described either as a physiological, genetic, or a molecular-

level process. The root cause was always the genetic mutation of JPH3 (as in Experiment 1).  

Like in Experiment 1, subjects first read about a group of biologists who were 

interested in investigating the statistical relation between a mutation of the JPH3 gene and a 

particular disease. To be able to manipulate the type of description, we labeled the disease 

LipoX instead of Lipogastrosis. Depending on condition, the disease was either described as 

being “an abnormal modification of fats in the digestive tract” (physiological-level condition) 

or as being “an abnormal mutation of a gene in the digestive tract” (genetic-level condition) 

or as being “an abnormal change of the molecular structure of enzymes in the digestive 

tract” (molecular-level condition). Like in Experiment 1, subjects were then presented with 

the serial trial-by-trial learning task that conveyed the contingency between the JPH3 

mutation and LipoX, and thereafter were presented with the causal model information. In 

the direct causal relationship condition, subjects were shown the illustration in Figure 12a, 

which was accompanied by the following instruction:  

“Later, the biologists found out that JPH3 and LipoX are directly causally related, which is 
illustrated in the figure below. That is, the JPH3 mutation can sometimes lead to LipoX 
(indicated by the arrow with the plus sign that goes from JPH3 to LipoX), an abnormal 
modification of fat in the digestive tract [vs. an abnormal mutation of a gene in the digestive 
tract vs. an abnormal change of the molecular structure of enzymes in the digestive tract.” 
 
The last part was varied according to condition. Note that the different variables within each 

chain mentioned the same type of abnormality (abnormal modification of fat, abnormal 

gene modification, or a change of the molecular structure of enzymes). Our goal here was to 

increase the semantic coherence of the mechanism so that we can rule out that we get 

weakening effects only when we interpolate mechanisms coming from different categories 

(e.g., different disease). 
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Table 2 

Descriptions of the interpolated variables in the indirect causal relationship condition of 

Experiment 3. 

 

 

 

 

 

Condition  Description  

physiological 

"Hepa23 (indicated by the arrow that goes from JPH3 to Hepa23 and the 
plus sign above the arrow), which is an abnormal modification of fat in the 
liver. Further, Hepa23 can sometimes lead to Cholo, an abnormal 
modification of fat of the spleen. Finally, Cholo can sometimes lead LipoX, 
an abnormal modification of fat in the digestive tract." 

genetic 

"Hepa23 (indicated by the arrow that goes from JPH3 to Hepa23 and the 
plus sign above the arrow), which is an abnormal gene mutation in the liver. 
Further, Hepa23 can sometimes lead to Cholo, an abnormal gene mutation 
in the spleen. Finally, Cholo can sometimes lead to LipoX, an abnormal 
mutation of a gene in the digestive tract." 

molecular 

"Hepa23 (indicated by the arrow that goes from JPH3 to Hepa23 and the 
plus sign above the arrow), which is a change of the molecular structure of 
enzymes in the liver. Further, Hepa23 can sometimes lead to Cholo, a 
change of the molecular structure of enzymes in the spleen. Finally, Cholo 
can sometimes lead to LipoX, an abnormal change of the molecular 
structure of enzymes in the digestive tract." 
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In the indirect causal relationship condition subjects were shown the causal model 

depicted in Figure 12b, accompanied by the following instruction:  

“Later, the biologists found out that JPH3 and LipoX are indirectly causally 
related by a chain that is illustrated in the figure below. Specifically, they 
found out that the JPH3 mutation can sometimes lead to […], where the 
information in the square brackets varied according to condition.”  

 

The instructions that were given in the different conditions are listed in Table 2.  

After subjects read the causal model instructions, they proceeded to the test 

scenario. Like in Experiment 1, subjects read that the biologists were now inspecting a new 

mouse that they had randomly sampled and which carries the mutation. Subjects in the 

direct causal relationship condition were shown the illustration depicted in Figure 13a. 

Subjects in the indirect causal relationship condition (causal chain) were shown the 

illustration depicted in Figure 13b. As in Experiment 1, subjects were asked to estimate the 

predictive probability of LipoX given JPH3, P(L|J). The phrasing of the test question was: 

“What do you think is the probability that the mouse also has LipoX?” Subjects provided 

their ratings on a slider ranging from 0 to 100 with the endpoints labeled “It is certain that 

this mouse does not have LipoX” and “It is certain that this mouse has LipoX.” 

Figure 13. Illustrations shown in the test phase of Experiment 2. Subjects in the direct causal 
relationship condition were presented the structure shown a). Subjects in the indirect causal 
relationship condition were presented the structure shown in b). 
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3.2. Results and Discussion  

The results are summarized in in Table 3. As can be seen, subjects tended to give 

lower ratings in the indirect causal relationship conditions than in the direct causal 

relationship conditions, irrespective of the level of description and type of variable. A 2 

(causal model: direct vs. indirect) × 3 (level of description: physiological vs. genetic vs. 

molecular) factorial ANOVA revealed that the main effect of “causal model” was significant, 

F(1, 504) = 20.78, p < .001, d= .41, confirming again a weakening effect. There was, by 

contrast, no effect of “level of description”, F(2, 504) = 1.10, and also no interaction between 

“causal model” and “level of description”, F(2, 504) = 0.37.  

Table 3 

Summary of the results in Experiment 2. 

  
This experiment therefore provides further evidence that the weakening effect is 

robust and that it is not dependent on the level of description and the degree of semantic 

coherence of the instructed causal mechanism. 

4. Experiment 3 

The previous experiments aimed to establish that, given a specific contingency 

between an invariant cause and effect, C and E, reasoners’ predictive probability estimations 

P(E|C) are lower when they believe that C and E are indirectly connected by a causal chain 

 
Direct causal relationship Indirect causal relationship 

 
Physiological 
level 

Genetic 
level 

Molecular 
level 

Physiological 
level 

Genetic 
level 

Molecular 
level 

Mean 68.66 68.25 66.28 59.18 62.34 58.06 

SD 16.63 17.92 16.47 21.15 21.99 21.88 

Median 71.00 71.00 68.00 61.00 67.00 63.00 

95% CI 3.59 3.87 3.55 4.56 4.74 4.72 
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than when they believe that C and E are directly causally connected. We showed that this 

weakening effect in causal interpolations occurs robustly across different contexts and tasks.  

The primary goal of Experiment 3 was to investigate a first possible psychological 

explanation of the weakening effect. One explanation for the weakening effect is that 

reasoners might perceive indirect causal relationships to be more prone to “failure” than 

direct ones. Whereas a direct causal relationship may appear stable, an indirect relationship 

may lead people to reflect about possible ways the mediating variables may be affected by 

outside variables, such as disablers, enablers, or alternative causes. The more variables the 

chain contains, the more outside variables attached to the different variables on the chain 

may be considered. Since the presence of disablers or the absence of enablers may disrupt 

the causal flow, a lowering of predictive probability ratings might be observed. By contrast, 

in a direct causal relation there are only two events that can be affected by outside 

variables. 

Normatively there should be no difference between explicit and implicit presentations 

of variables in cases of interpolation. In the initially represented direct causal relationship 

these disrupting possibilities are also reflected in the probabilistic relations inherent in the 

observed non-deterministic contingency. In direct relations, the existence of disablers is 

implicitly implied by a lowered predictive probability between C and E in the data because 

something must have been the cause for the effect being absent when the cause is present. 

When this direct relation is subdivided into a chain, potential disruptions should just be 

subdivided along the chain, by assuming contingencies for each link whose product will be 

identical to the contingency of the overall direct relation linking the initial and final variable 

of the chain.  
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However, psychologically it may make a difference whether outside variables are 

explicitly mentioned or not, or whether interpolated variables are explicitly presented, which 

possibly makes subjects more likely to consider possible disruptions of these named 

variables. Research, for example about support theory, has shown that people weigh 

explicitly mentioned variables more than implicit ones (Tversky & Koehler, 1994). Thus, our 

hypothesis is that one reason for weakening with indirect relations may be that they invite 

inferences about possible disruptions triggered by the sequence of variables along the chain.  

In the present study we test one aspect of this hypothesis directly. Focusing on 

disablers, we compare causal models in which disablers are explicitly mentioned with causal 

models in which they remain implicit. We expect the impact of disablers to be higher when 

they are explicitly mentioned than when they are only implied. Moreover, we contrast again 

a direct relation condition with an indirect one with interpolated variables. Our hypothesis 

predicts a main effect there too because direct relations invite inferences regarding fewer 

disablers than indirect causal relations which mention more, possibly disruptable variables. 

A further goal of the study was to test whether learners solely reason on the basis of 

causal model information or whether they are actually sensitive to the learning data. As 

mentioned above, Bes et al. (2012) claimed that subjects largely disregard data. However, 

because of violations of the Markov condition their learning data were not in line with the 

instructed causal model, which might have been a reason for neglecting the data. Therefore, 

we revisited this question by manipulating the size of the contingency presented to learners. 

Otherwise, we used the same “updating” paradigm as in Experiments 1 and 2. As Experiment 

2 did not show any influence of the level of description, we presented only the physiological 

variables which we already used in Experiment 1.  
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4.1 Method 

4.1.1. Participants 

One hundred and ninety subjects (146 female, 41 male, three subjects indicated 

neither male nor female, 𝑀𝐴𝑔𝑒= 34.41, 𝑆𝐷𝐴𝑔𝑒 = 11.85) were recruited via the online platform 

Prolific (www.prolific.ac). This sample size allows it to detect medium main effects and 

interactions (although we did not predict any interaction effects) of d = 0.5 with more than 

eighty percent probability. All subjects were native English speakers and had at least an A-

level degree. They were paid 0.70 £ for their participation.  

Table 4 
 
Contingencies presented to subjects in Experiment 3 

 

4.1.2. Design, Materials, and Procedure 

The design was a 2 (causal model: direct vs. indirect) × 2 (information about 

disablers: given vs. not given) × 2 (contingency: high vs. low; see Table 4) between-subjects 

design. Like in Experiments 1 and 2, subjects first were presented with trial-by-trial learning 

data presenting a contingency between JPH3 and the disease Lipogastrosis. The 

contingencies shown to participants are depicted in Table 4. The contingency in the “high 

contingency” condition was the same as in Experiment 1. The “low contingency” had a lower 

predictive probability but the same base rate of the effect in the absence of the cause.  

Contingency  n (J, L) n (J, ¬L)  n (¬J, L) n (¬J, ¬L) P(L|J) P(L|¬J) ∆P 

high 18 6 5 19 0.75 0.21 0.54 

low 11 13 5 19 0.46 0.21 0.25 
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After the learning phase, subjects were provided with the causal model information. 

The “direct causal relationship” condition in which no information about disablers was given 

was comparable to the one in Experiment 1. In the condition in which we explicitly 

mentioned disablers, participants were shown the illustration depicted in Figure 14 and read 

the following text:  

“Please read the following new information:  
Later, the biologists found out that JPH3 and Lipogastrosis are directly causally related, 
which is illustrated in the figure below by the arrow that goes from JPH3 to Lipogastrosis. The 
plus sign above the arrow indicates that the probability of contracting Lipogastrosis is higher 
for individuals who suffer from a JPH3 mutation compared to individuals who do not have 
the mutation. In addition, the biologists found out that there also exists a particular gene, 
L32, that has a protective influence. Specifically, having the gene L32 reduces the probability 
of Lipogastrosis.” 
 

Other than in Experiments 1 in which the causal chains contained only one 

interpolated variable, subjects in the indirect causal relationship condition of Experiment 3 

were told that the causal model was a four-variable causal chain, with the interpolated 

variables being Hepatocitosis and Cholestocitis. In the condition in which we explicitly 

Figure 14. Illustration of the causal model shown to subjects in Experiment 3 in the direct 
causal relationship condition in which disablers were explicitly presented. 
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mentioned disablers, participants were shown the illustration depicted in Figure 15 and read 

the following text:  

“Please read the following new information:  
Later, the biologists found out that JPH3 and Lipogastrosis are indirectly causally related by a 
chain that is illustrated in the figure below. Specifically, they found out that individuals who 
suffer from a JPH3 mutation have a higher probability of contracting Hepatocitosis (indicated 
by the arrow that goes from JPH3 to Hepatocitosis and the plus sign above the arrow), which 
is an abnormal increase of hepatic enzymes. Further, for individuals who suffer from 
Hepatocitosis there is a higher probability of contracting Cholestocitis, an abnormal increase 
in cholesterol levels. Finally, Cholestocitis increases the probability of contracting 
Lipogastrosis. In addition, the biologists found out that there also exist different genes, H24, 
C78, and L32, that have a protective influence. Specifically, having the gene H24 reduces the 
probability of Lipogastrosis by reducing the probability of Hepatocitosis (indicated by the 
arrow with the minus sign). Having the gene C78 also reduces the probability of Lipogastrosis 
by reducing the probability of Cholestocitis. Finally having the gene L32 reduces the 
probability of Lipogastrosis.” 
 

After participants were presented the causal model information, they proceeded to 

the test question. We asked the same predictive probability question as in Experiment 1.  

Figure 15. Illustration of the causal model shown to subjects in Experiment 3 in the 
indirect causal relationship condition in which disablers were explicitly presented. 
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4.2. Results and Discussion  

The results are summarized in Figure 16. As can be seen, we replicated again the 

effect that ratings for indirect causal chains are lower than for direct causal relationships. A 2 

× 2 × 2 ANOVA with the between-subjects factors causal model (direct vs. indirect), 

information about disablers (given vs. not given), and contingency (high vs. low) confirmed 

that the effect of causal model was significant, F(1, 282) = 15.80, p < .001, d = .46. Figure 16 

also shows that ratings differed depending on whether subjects were informed about the 

existence of potential disablers or not. The predictive probability ratings were lower in the 

condition that explicitly mentioned the existence of disablers than in the condition that did 

not mention the existence of disablers, F(1, 282) = 18.69, p < .001, d = .51. This finding 

indicates that subjects who are more likely to think about the possibility that disabler may 

disrupt a causal process tend to lower their predictive probability ratings despite identical 

covariation data.  

We also observed an influence of the contingency that subjects observed. Ratings 

were overall higher in the condition with the higher contingency, F(1, 282) = 9.03, p < .01, d 

Figure 16. Results (means and 95% CIs) of Experiment 3. 
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= .35, which shows that subjects are sensitive to the presented data. The ANOVA yielded no 

significant interaction effects.  

The finding that learners pay attention to the data, contradicts the claim of Bes et al. 

(2012) that subjects generally ignore learning data. However, we also observed substantial 

deviations from the presented probabilities, some of which might be explained by regression 

effects (see Rottman & Hastie, 2014, for evidence for regression to the mean in causal model 

learning). Thus, subjects clearly weigh causal model information more strongly than the 

observed data. Under the assumption that causal model information probably relies on 

stronger evidence than a single study, weighing causal model instruction more strongly 

seems reasonable. 

The experiment also shows that explicit information about disablers leads to weaker 

predictive probability ratings than implicit information, despite identical contingencies. Thus, 

explicitly mentioning disablers leads to a further weakening of predictive probability 

estimations beyond what we have seen so far. We focused on disablers but would have 

expected a similar finding had we pointed out the possibility of an absence of enablers.  

We also found an independent weakening effect. Again, direct relations yielded higher 

predictive probability ratings than indirect relations. This finding is also consistent with our 

hypothesis if it is assumed that the likelihood of thinking about disablers increases with the 

number of variables to be considered in both the explicit and the implicit conditions. 

However, we do not have direct evidence that this is in fact underlying the weakening effect 

in the two conditions, the obtained empirical pattern is only consistent with the hypothesis.  

The hypothesis that multiple variables on a chain should lead to weakening because 

more disablers might be considered in the indirect representation is actually only valid under 

the assumption that subjects do not represent causal strengths along the links correctly in 
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interpolation scenarios. Since in interpolation scenarios the product of the strengths of the 

links of the interpolated chain should be identical to the strength of the overall contingency 

between the two variables linked in both the direct and indirect causal relationship 

condition, both representations should reflect the same impact of disablers. If subjects 

normatively represented interpolated chains, the impact of disablers on the direct causal 

relation will be identical to the sum of impacts of the disablers along the chain links.  

However, to accomplish this, subjects need to understand that the causal strengths of 

individual links become stronger, the more links are interpolated (see section 5 for an 

explanation). If subjects do not understand this property, and do not modify link strengths 

relative to the length of the chain, then additional interpolated links will indeed increase the 

represented impact of disablers and hence lead to a weakening effect. The next experiment 

will directly test subjects’ beliefs about the strengths of links in interpolation scenarios. 

5. Experiment 4 

The goal of Experiment 4 was to test more directly subjects’ belief of the causal 

strengths of interpolated links. The key idea is that people may have difficulties 

differentiating between lengthening and interpolations. On the surface, the results of both 

processes look the same. One cannot tell just by looking at a chain with several variables 

whether it is the result of a lengthening or an interpolation process. Moreover, lengthening 

may be the more frequent process in daily life. For example, when planning interventions, 

we may focus on short-term or long-term effects. Long-term effects are less likely than 

short-term effects. By contrast, interpolations occur most frequently in the context of 

discovery and learning. It may well be that this is a less frequent scenario in daily life. Given 

that lengthening often leads to a weakening effect, confusing lengthening with 
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interpolations and focusing on lengthening explains why we see an erroneous weakening 

effect also in interpolations.  

One way to test this hypothesis is by focusing on the probabilistic relations people 

assume for the individual links within a causal chain. In lengthening scenarios, the process 

starts with a causal chain (or a direct causal relation), which stays fixed. Additional variables 

are added at either side of the chain with flexible strength. According to the multiplication 

rule (Equation 1) this should in probabilistic chains typically lead to a weakening effect. 

Importantly, the strengths of the initially represented causal links are not affected by the 

addition of further links extending the original model.  

By contrast, in an interpolation scenario, the covariation between the initially 

presented cause C and effect E should be more or less stable (depending on the reliability of 

the measurements). When interpolating variables, the strengths of the newly introduced 

links should go up proportional to the number of interpolated links. This is a basic 

consequence of the multiplication rule. Given that a multiplication of causal strength 

estimates for the links of the chain need to result in an invariant value for the initially 

presented C and E, their values need to go up to result in an equal result of the product. 

If, however, people confuse interpolations with lengthening, we expect to see 

relatively invariant strength estimates for the individual links regardless of the length of the 

interpolated chain. The size of the link estimates may be influenced by the initially observed 

covariation and/or some strength prior. If invariance of link strength estimates is assumed, 

then, due to the multiplication rule, a weakening effect should occur here as well. 

To test our theory, we again used our standard interpolation task, while contrasting 

different conditions in which the number of interpolated variables was manipulated. The 

contingency for the initially presented cause and effect is shown in Table . In this 
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experiment, we used a contingency which implies that JPH3 is a necessary cause of 

Lipogastrosis (i.e., P(L|¬J)=0). This simplifies the calculation because P(L|J) should simply be 

the product of the predictive probabilities of its components. However, given that the 

multiplication rule (Equation 1) refers to contingencies (∆P) and we know from previous 

research that subjects often provide a more conservative positive estimate when asked 

about the probability of an effect in the absence of the cause, P(L|¬J), we also had subjects 

estimate this quantity. We did not expect that this estimate varies with conditions so that 

our general prediction should be unaffected. 

We contrasted a direct causal relationship condition with two indirect causal 

relationship conditions (a two-links and a four-links chain). As dependent variables we asked 

subjects to give an average estimate of the probabilistic relations of the individual links. 

Importantly, no data were presented about the individual interpolated links. As in most of 

our studies, the causal chains were just verbally instructed. Normatively, the averaged 

estimates should go up with increased length of the chains (see the line with the normative 

predictions in Figure 19 and Table 5). If, by contrast, learners confuse lengthening with 

interpolations, we expect relatively invariant estimates. 

Table 5 

Contingency presented to subjects in Experiment 5 

 L ¬ L P(L|J) P(L|¬J) ∆P M ∆𝑃𝑛=2 M ∆𝑃𝑛=4 

J 10 14 
.42 .0 .42 .65 .81 

¬ J 0 24 
Note M ∆𝑃𝑛=2 and M ∆𝑃𝑛=4 denote the average single-link contingencies for a causal chain 
with a distal contingency of ∆P and n = 2 vs. n = 4 known links.  
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5.1 Method 

5.1.1. Participants 

Two hundred and ten subjects (124 female, 82 male, four subjects indicated neither 

male nor female, 𝑀𝐴𝑔𝑒= 35.55, 𝑆𝐷𝐴𝑔𝑒= 11.29) were recruited via the online platform Prolific 

(www.prolific.ac). This sample size allows it to detect even a small interaction effect of d = 

0.25 between test query and causal structure. A strong interaction effect is predicted by the 

normative values but we hypothesized that we would see no effect. To have a strict test, we 

tested therefore against the possibility of a small interaction effect. All subjects were native 

English speakers and had at least an A-level degree. They were paid 0.70 £ for their 

participation. 

5.1.2. Design, Materials, and Procedure 

The design was a 3 (causal model: direct relationship vs. two-links chain vs. four-links 

chain; between subjects) × 2 (type of probability query: P[variable|parent] vs. 

P[variable|¬parent]; within-subject) mixed design. The overall procedure was comparable to 

the ones used in the previous experiments. However, since the task is slightly more complex, 

we tried to increase attentional involvement during learning by changing the initial learning 

task into an active supervised learning paradigm. An illustration of the task is shown in 

Figure 17. We first showed subjects only the cause status for every of the total 48 

observations, and then asked them to make a guess about the status of the effect. To check 

whether the effect was present or absent, subjects had to click on a “check disease” button 
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displayed on the screen (see Figure 17). Another difference from the previously used 

paradigm was that subjects had to navigate actively through the observations in the sample. 

They had to click on a “next” button to proceed to subsequent cases and could also click on 

a “previous” button if they wanted to go back to earlier cases. For each participant, the 

order in which the 48 cases were shown was randomly determined prior to the presentation 

of the first case of the sample.  

As in most previous experiments, the causal model information was given to 

participants after they had finished the learning task. The information shown to participants 

in the direct causal relationship and in the two-links chain condition was like the one we 

used in previous experiments. In the four-links chain condition, subjects were presented 

with the following text and the illustration shown in Fehler! Verweisquelle konnte nicht 

gefunden werden.18:  

 
 
 
 
 

Figure 17. Illustration of the learning task used in Experiment 4. The left picture shows the 
initial state of the screen, at which only the status of the cause factor was shown. The 
effect status was only revealed after subjects clicked on the “check disease” button 
displayed below a grey mask. The right picture shows what the screen looked like when 
the effect status was revealed to participants. The illustration depicts a case in which the 
cause was present (yellow JPH3 box) but the effect was absent (gray Lipogastrosis box). 
With the “previous” and “next” buttons, subjects were able to navigate through the 
sample (consisting of 48 cases in total).  
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“Please read the following paragraph which provides a new piece of information:  
The biologists later found out that JPH3 and Lipogastrosis are in fact indirectly causally 
related as illustrated in the figure below. Specifically, the JPH3 mutation can sometimes lead 
to Hepatocitosis, an abnormal occurrence of hepatic enzymes. This is indicated by the arrow 
(with a + sign) that goes from JPH3 to Hepatocitosis. Furthermore, Hepatocitosis can 
sometimes lead to Spirillicitis, an infection with a bacterium colonizing the gut. This is 
indicated by the arrow (with a + sign) that goes from Hepatocitosis to Spirillicitis. 
Furthermore, Spirillicitis can sometimes lead to Cholestocitis, an abnormal occurrence of 
cholesterol. This is indicated by the arrow (with a + sign) that goes from Spirillicitis to 
Cholestocitis. Finally, Cholestocitis can sometimes lead to Lipogastrosis. This is indicated by 
the arrow (with a + sign) that goes from Cholestocitis to Lipogastrosis. Other factors can also 
influence the disease.” 
 

Other than in the previous experiments, the order of the interpolated variables in the 

four-links chain (Hepatocitosis, Spirillicitis, and Cholestocitis, see Fehler! Verweisquelle 

konnte nicht gefunden werden.18) condition was randomized between subjects. The labels 

of the interpolated variable in the two-links chain condition was randomly varied between 

subjects and could be either of the interpolated variable labels we used in the four-links 

chain condition.  

After subjects were instructed about the underlying causal model, they proceeded to 

the inference screen on which we asked them to make two ratings assessing the assumed 

strength of a single link of the introduced causal model. Given that no new data was 

presented so that subjects could not possibly distinguish between links, we instructed them 

that they should assume that all links are equally strong, and were only asked about one 

randomly picked link.  

Figure 18. Illustration of the causal model shown to subjects in Experiment 4 in the four-links 
chain condition. The order of the middle variables Hepatocitosis, Spirillicitis, and Cholestocitis 
was randomized between subjects.  
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For example, in the four-links chain condition subjects first were presented with the 

following text, accompanied again by the illustration of the causal model:  

“The following questions refer to the causal chain between JPH3 and Lipogastrosis. Please 
assume that the four causal links (expressed by the four arrows) in the graph represent 
equally strong causal relations.” 
 

Subsequently, we asked subjects to estimate the probability that a particular effect 

of the introduced causal model was present given that its direct parent variable was present, 

P(variable|parent), as well as the probability that this effect was present if the direct parent 

variable was absent, P(variable|¬parent). For example, some participants in the four-links 

chain condition were asked the following two questions:  

“Assuming that all links are equally strong, how likely do you think is it, for example, that a 

mouse having Hepatocitosis has Spirillicitis?” And “Assuming that all links are equally strong, 

how likely do you think is it, for example, that a mouse not having Hepatocitosis has 

Spirillicitis?” Ratings for both questions were provided on a slider ranging from 0 to 100 

(with endpoints labelled “It is certain that this mouse does not have Spirillicitis.” and “It is 

certain that this mouse has Spirillicitis.”). The specific link to which the test questions 

referred in the two-links chain and the four-links chain condition was randomized between 

subjects.  

Figure 19. Results (means and 95% CIs) of Experiment 4 and normative values shown in the dotted line. 
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5.2. Results and Discussion 

The results are summarized in Figure 19 (means and 95% CIs). The left part of Figure 

19 shows the results for the base rate ratings in the absence of the cause, 

P(variable|¬parent), which in the two-links and four-links chain conditions were averaged 

over the respective link of the causal model subjects were asked about. The right part shows 

the results for the predictive probability estimations, P(variable|parent). The dotted line 

depicts the normative (average) values for these parameters. As can be seen, subjects gave 

overall higher ratings when they were asked to estimate P(variable|parent) than when they 

were asked to estimate P(variable|¬parent), which corresponds to what they have seen. 

However, it can also be seen that the P(variable|¬parent) ratings were notably higher than 

the normative values (which were 0). However, they stayed relatively invariant across the 

conditions, which allows us to focus on the predictive probabilities (P(variable|parent)), 

subjects were asked about. 

Figure 19 shows that averaged ratings for the P(variable|parent) estimations 

descriptively indicate no difference between the direct and indirect two-links chain 

conditions. There is a hint of an upward trend for the four-links conditions but the estimates 

are much closer to the other estimates than the normative value (see Figure 19).  A 3 (causal 

model: direct relationship vs. two-links chain vs. four-links chain; between subjects) × 2 (type 

of probability query: P[variable|parent] vs. P[variable|¬parent]; within subject) mixed 

ANOVA only yielded a significant main effect of “type of probability query”, F(1, 207) = 

224.73, p < .001, d = 1.47, confirming that P(variable|parent) ratings were indeed higher 

than P(variable|¬parent) ratings. Importantly, there was no significant interaction between 

“causal model” and “type of probability query,” which would have been expected based on 
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the normative values. Post-hoc tests (Scheffé test) revealed that the P(variable|¬parent) 

ratings as well as the P(variable|parent) ratings did not differ from each other. 

In sum, the results of this experiment are consistent with our prediction that subjects 

have a hard time understanding the normative implications of causal interpolations, and 

may not clearly understand the difference between lengthening and interpolations. This is 

understandable because the causal models look the same in the two cases and do not reveal 

the process underlying their construction.  Consequently, subjects are largely insensitive to 

the normative implication of increased strength with an increased number of interpolated 

links. Overall, the results are consistent with the theory that subjects tend to assume fairly 

stable link strengths, as in lengthening scenarios. Keeping the strengths of the links relatively 

invariant, entails a weakening effect proportional to the length of the chain, which is what 

we have seen in the previous studies. The results of the experiment are consistent with the 

theory presented in the context of Experiment 3 that increased length of the interpolated 

chain increases the potential impact of disablers both when the disablers are implicitly (in 

the causal strength parameters) and explicitly represented. 

6. Experiment 5 

In the previous experiments we focused on the contrast between direct causal 

relations and indirect causal chains with various lengths. Chains are only one example for a 

mechanism linking two variables. The two variables may also be mediated by more complex 

causal models, for example, by causal diamond structures which link cause and effect 

through two parallel converging chains. Experiment 5 focuses on such more complex causal 

models. 

Normatively, there is again an asymmetry between a situation in which a cause-effect 

relation is later augmented by embedding it into a complex causal model (analogous to 
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lengthening), and an interpolation of a complex causal model as a representation of a newly 

discovered mechanism linking two previously observed variables. For the same reasons as 

with simple chains, interpolations of a complex causal models should not systematically alter 

the covariation between the two variables. Again, the most plausible assumption is that the 

initially observed covariation between the two variables had already been mediated by a 

complex causal model, fragments of which were only later discovered.  

By contrast, if the same causal model (e.g., diamond structure) is generated as a result 

of an augmentation process (the initially presented two variables would have to differ, of 

course), then the predictive probabilities and contingencies between the events would be 

dependent on the structure of the causal model and its parameter (i.e., causal strengths, 

functional form).   

Consider the causal models in Figure 20, which we have used in the present 

experiment. If the covariation between JPH3 and Lipogastrosis has been reliably established 

in the initial learning phase, interpolating any of the four causal models should not 

systematically alter this covariation (beyond what is expected due to sampling variation).  

Now, for examples of augmentations, we can use the causal models in Figure 20b, c, 

or d. Assume, for example, that the process starts with the JPH3-H24 relation. If later the 

other variables are being discovered and added to the initial causal model fragment, the 

probabilistic relationship between JPH3 and Lipogastrosis will crucially depend on the 

structure of the causal model (Fig. 20b, c, or d), the causal strengths of the added links, and 

the functional form. As for functional form, given that the graph conveys that the common 

cause model and the two chains emanating from JPH3 in Figure 20c and d honors the 

Markov condition, the open question here is how the common effect model converging on 

the effect Lipogastrosis combines the two causes, PABA and TAMP. We compared a standard 
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disjunctive model (noisy-OR) (Fig. 20c) in which each cause individually and both causes 

together probabilistically cause the effect with a conjunctive model (noisy-AND)(Fig. 20d) in 

which both causes have to be present to probabilistically cause the effect. 

What do we predict in the present experiment? Given that Experiment 4 suggests that 

learners tend to treat interpolations like augmentations (e.g., lengthening), we expect that 

the ratings for the JPH3-Lipogastrosis relation will be affected by the mediating causal 

model. We should again see a weakening effect because the two events are mediated by 

two chains. However, depending on whether the two chains are viewed as alternative routes 

to the effect, thus compensating each other for failures of causation (disjunctive noisy-OR) 

or as a conjunctive Noisy-AND structure which requires both causes to be present, we 

predict different sizes of the weakening effect. The lowest ratings should be seen in the 

conjunctive Noisy-AND model because the effect seems less likely when both causes need to 

be present. 

6.1 Method 

6.1.1. Participants  

Three hundred and twenty-nine subjects (208 female, 121 male, 𝑀𝐴𝑔𝑒 = 35.01, 𝑆𝐷𝐴𝑔𝑒= 

10.77) were recruited via the online platform Prolific (www.prolific.ac). This sample size 

allows it to detect a small main effect of d = 0.40 for the causal model factor. All subjects 

were native English speakers and had at least an A-level degree. They were paid 0.70 £ for 

their participation. 

6.1.2. Design, Materials, and Procedure 

One factor with three levels (type of causal model: direct link vs. causal chain vs. 

conjunctive diamond vs. disjunctive diamond) was manipulated between subjects. Subjects 

were randomly allocated to the different conditions. We used the same learning paradigm as 
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we did in Experiments 1, 2, and 3. Thus again, in Phase 1 subjects learned about a 

covariation between JPH3 and Lipogastrosis. We used the same learning data as in 

Experiment 1 (see Table 1). The probability of Lipogastrosis given a mutation of JPH3 was 

therefore again P(L|J) = 0.75 and the base rate of Lipogastrosis in the absence of 

Lipogastrosis was P(L|¬J) = 0.21. Hence, the contingency was ∆P = 0.54.  

Next, the causal model instructions were presented (see Table 6 for the different 

conditions). The graphic models that were presented together with the instructions are 

shown in Figure 20.  
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Table 6 

Causal-model instructions presented in the different conditions of Experiment 5. 

Condition  Instruction 

Direct link  After having completed their study, the biologists hypothesized that JPH3 and 
Lipogastrosis are directly causally related, as illustrated in the figure below. Additional 
data confirmed the biologists’ hypothesis. Specifically, mice who carry the JPH3 mutation 
have an increased probability of contracting Lipogastrosis. This is indicated by the arrow 
(with a + sign) that goes from JPH3 to Lipogastrosis.  

Causal chain  After having completed their study, the biologists hypothesized that JPH3 and 
Lipogastrosis are indirectly causally related as illustrated in the figure below. Additional 
data confirmed the biologists’ hypothesis. Specifically, mice who carry the JPH3 mutation 
have an increased probability of expressing a particular other gene, H24 [C78]. This is 
indicated by the arrow (with a + sign) that goes from JPH3 to H24 [C78]. Further, mice 
who express H24 [C78] have a higher probability of producing the enzyme PABA [TAMP]. 
This is indicated by the arrow (with a + sign) that goes from H24 [C78] to PABA [TAMP]. 
Finally, mice who produce the enzyme PABA [TAMP] have a higher probability of 
contracting Lipogastrosis. This is indicated by the arrow (with a + sign) that goes from 
PABA [TAMP] to Lipogastrosis.   

Disjunctive 
diamond 

After having completed their study, the biologists hypothesized that JPH3 and 
Lipogastrosis are indirectly causally related, as illustrated in the figure below. Additional 
data confirmed the biologists’ hypothesis. Specifically, mice who carry the JPH3 mutation 
have a higher probability of expressing two particular other genes, H24 and C78. This is 
indicated by the arrows (with a + sign) that go from JPH3 to H24 and C78. Further, mice 
who express H24 have a higher probability of producing the enzyme PABA. Likewise, mice 
who express the gene C78 have a higher probability of producing the enzyme TAMP. This 
is indicated by the arrows (with a + sign) that go from H24 to PABA and from and C78 to 
TAMP. Finally, mice who produce the enzymes PABA and [in conjunctive]/or [disjunctive] 
TAMP have a higher probability of contracting Lipogastrosis. This is indicated by the 
arrows (with a + sign) that go from PABA and TAMP to Lipogastrosis.  Importantly, both 
PABA and TAMP independently of each other increase the probability of contracting 
Lipogastrosis. Hence, mice with either PABA or TAMP have an increased probability of 
contracting the disease, and mice who have both PABA and TAMP have the highest 
probability of contracting the disease.  

Conjunctive 
diamond  

After having completed their study, the biologists hypothesized that JPH3 and 
Lipogastrosis are indirectly causally related, as illustrated in the figure below. Additional 
data confirmed the biologists’ hypothesis. Specifically, mice who carry the JPH3 mutation 
have a higher probability of expressing two particular other genes, H24 and C78. This is 
indicated by the arrows (with a + sign) that go from JPH3 to H24 and C78. Further, mice 
who express H24 have a higher probability of producing the enzyme PABA. Likewise, mice 
who express the gene C78 have a higher probability of producing the enzyme TAMP. This 
is indicated by the arrows (with a + sign) that go from H24 to PABA and from and C78 to 
TAMP. Finally, mice who produce the enzymes PABA and [in conjunctive]/or [disjunctive] 
TAMP have a higher probability of contracting Lipogastrosis. This is indicated by the 
arrows (with a + sign) that go from PABA and TAMP to Lipogastrosis.  Importantly, the 
probability of contracting Lipogastrosis is only increased when both PABA and TAMP are 
present. Hence, mice who have only PABA or TAMP do not have an increased probability 
of contracting the disease. Only mice who have both PABA and TAMP have an increased 
probability of contracting the disease. 
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Figure 20b shows that we used two different sets of interpolated variables in the 

causal chain condition. Whether the interpolated variables were “H24” and “PABA” or “C78” 

and “TAMP” was randomly altered between subjects. We used these two different sets of 

interpolated variables because they corresponded to the variables that were described in 

the two causal diamond conditions.  

After subjects had studied the causal model information, they proceeded to the test 

question. Like in previous experiments, subjects read that the biologists had randomly 

sampled a new mouse that carries the JPH3 mutation. We also showed the respective causal 

model again, with the JPH3 variable being marked in yellow. Subjects then were asked to 

estimate the probability that this mouse would also be suffering from Lipogastrosis. Ratings 

Figure 20. Causal graphs shown in the different conditions of Experiment 
5. Whether subjects were presented the upper or lower causal chain in 
the causal-chain condition was randomized. We did this because we 
wanted to present subjects with the same labels and variable descriptions 
that were used in the two causal-diamond conditions.  
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were provided on a slider from 0 to 100, with the endpoints labeled as “it is certain that this 

mouse does not have Lipogastrosis” and “it is certain that this mouse has Lipogastrosis.”  

6.2. Results and Discussion  

The results are summarized in Table 7. Ratings in the causal chain condition were 

again lower than the ratings in the direct link condition, replicating the weakening effect. 

However, the difference was smaller than in previous experiments. The ratings in the 

conjunctive and disjunctive diamond conditions were also lower than the ratings in the 

direct link condition, implying that the weakening effect does occur for other indirect causal 

models, too. As predicted, ratings also differed between the conjunctive and the disjunctive 

diamond conditions. When subjects had learned that two factors needed to be present for 

the effect (conjunctive case), their predictive probability estimations tended to be lower 

than when they had learned that either of the two different factors independently can cause 

the effect (disjunctive case).  

Table 7 
Summary of the results of Experiment 5. 

  Direct Causal chain Disjunctive 
diamond 

Conjunctive 
diamond 

Mean  66.30 60.83 58.82 53.00 

SD 18.31 19.95 18.58 19.54 

Median  70.00 60.00 60.00 52.00 

95% CI 4.05 4.33 4.06 4.32 

 

The statistical analyses partially confirm these impressions. First of all, a global one-

way ANOVA was significant, F(3,325) = 6.69, p < .001, d = .51, confirming that subjects did 

indeed make different predictive probability judgments in the four different causal model 

conditions. Planned contrasts (two sided) revealed that the difference between the direct 

link and the chain condition was not significant this time, t(325) = 1.84, p = .07. The 

weakening effect was smaller than in our previous studies, d = 0.29. If we compare the  
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means shown in Table 7 with the ones obtained in Experiment 1 we see that the smaller 

difference between the direct and the causal-chain condition was not solely due to higher 

ratings in the causal-chain condition. The ratings in the direct link condition were also lower 

than those in Experiment 1.  

The difference between the direct link and the disjunctive diamond condition was 

also significant, t(325) = 2.51, p = .01, d = 0.41. The difference between the conjunctive and 

the disjunctive diamond conditions missed significance, t(325) = 1.95, p = .05, d = 0.31. 

Ratings in the conjunctive diamond condition were significantly lower than the ratings in the 

direct link condition, t(325) = 4.43, p < .001, d = 0.70. Finally, ratings in the conjunctive 

diamond condition were lower than ratings in the causal-chain condition, t(325) = 2.63, p < 

.01, d = 0.40. We used two-sided tests as in the previous experiments but one could defend 

one-sided tests for the tests of the conjunctive diamond condition here, which yielded the 

lowest ratings as predicted. 

In sum, this exploratory experiment shows again that interpolations lead to 

weakening effects, which now could also be found with more complex interpolated causal 

models. Normatively, no difference whatsoever should have been observed between causal 

model conditions, had subjects a full grasp of interpolations. Despite some weak (or possibly 

non-existent) effects in the individual comparisons, the strong main effect of the causal 

model factor clearly supports the hypothesis that people do not fully understand 

interpolations and rather treat them like augmentations. Further specific support for this 

hypothesis is provided by the results of the conjunctive diamond model condition. This 

model seemed to convey that the effect should be less likely which is then reflected in 

somewhat lowered ratings. Of course, this study requires follow-up work but it is clearly 

consistent with what we have seen with causal chains. 
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7. General Discussion 

Causal knowledge is not static, it is constantly modified and changed based on new 

evidence. The present set of studies explores one important case of causal belief revisions, 

causal interpolations. The prototypic case of an interpolation is a situation in which we 

initially have gathered knowledge about a direct causal or covariational relation between 

two variables but later become interested in the mechanism linking these two variables. We 

may, for example, use our knowledge about one effect of a drug such as Aspirin in daily life 

but later are interested in learning how Aspirin exerts its effect. Interpolations in science are 

frequent. Scientists have, for example, in the past decades traced the precise mechanisms 

initiated by the intake of Aspirin. This knowledge has led to knowledge about further effects 

of the drug beyond relieving headaches (e.g., prevention of heart attacks in specific 

populations).  

Our key finding of our research is that interpolations tend to be misrepresented, which 

leads to the paradox of knowing more: The more we know about the mechanism, the less 

predictable we seem to find the effect we are trying to predict. Interpolating a mechanism 

should normatively not alter the statistical relationship between the variables that initially 

are represented as direct. This can be best understood by considering what role the 

mechanism plays prior to its discovery. The discovery of a mechanism linking two variables 

does not change the causal relation. If the discovery correctly identifies variables on the 

mechanism path, these variables were already there and effective prior to their discovery 

(see Fig. 4). Interpolations do not add mechanisms, they just discover them. Thus, if the 

covariation between two variables has been mediated by the later discovered mechanism all 

along, discovering fragments of the mechanism should not alter the covariation, unless new 

data has been collected that contradict the initial findings. 
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By contrast, we found a systematic weakening effect when a mechanism (e.g., a causal 

chain or a more complex causal model) was interpolated. The predictive probability tends to 

be estimated significantly lower for two variables when a mechanism is interpolated than 

when they are represented as a direct relation. We replicated this effect in various 

conditions with different types of variables and different types of interpolated causal 

structures. We also found that the effect is so intuitive that even experts (which includes co-

authors) were initially convinced that weakening is normative. 

To provide a psychological explanation for the weakening effect, we pursued two 

interrelated hypotheses, which both were supported. The overarching theoretical 

explanation behind both hypotheses is that people have difficulties distinguishing between 

interpolations and augmentations. If given chains, for example, are lengthened at the outer 

ends of the chain, then a weakening of the predictive relation between the initial cause and 

the added probabilistic effects is in most cases normatively expected. The longer the 

probabilistic chain, the weaker the statistical relations tend to become. By contrast, in 

interpolations the covariation between the two initially directly linked variables should stay 

invariant regardless of the length of the interpolated chain. However, our evidence shows 

that people seem to confuse interpolations with lengthening and therefore activate 

intuitions about lengthening to make predictions in interpolation scenarios. This is 

understandable if it is assumed that lengthening is more frequent in daily life. Moreover, on 

the surface a chain that is generated by lengthening cannot be distinguished from one that is 

the result of interpolations. Apparently, subjects are mainly sensitive to the ordinal length of 

chains regardless of how they were generated. 

Confusing interpolations with lengthening (or other types of augmentations of causal 

knowledge) entails specific interrelated predictions, two of which we have tested. The first 
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claims that the greater number of variables in a chain should sensitize subjects to a larger 

number of possible disruptions (i.e., disablers, lack of enablers, alternative causes) whereas 

in direct relations all possible disruptions are condensed in the representation of a single link 

(and a summarized alternative cause). Normatively, in cases of interpolation it should 

actually not make a difference whether a covariation is represented as a consequence of 

direct causation or as indirect. The direct relationship should normatively lump together all 

the possible disruptions of the interpolated chain. However, this property requires an 

understanding of the fact that the causal strengths of the links of the chains need to be 

adapted to the length of the chain. If, by contrast, interpolation is confused with 

lengthening, then it is indeed true that disruptions (and hence weakening) become more 

potent the longer the chain is. We predicted that subjects’ predictive probability estimates 

about the initially presented two covarying events will be affected by the greater length of 

the interpolated chain because we predicted that subjects tend to represent more 

potentially disrupting variables for chains compared to direct causal relations. Supporting 

this hypothesis, we generally found that direct causal relations received higher predictive 

probability ratings than indirect causal relations. As second evidence for the disruption 

hypothesis we have shown in Experiment 3 that weakening becomes even stronger when 

disablers are explicitly labelled. This is consistent with research showing that explicit 

representations are overweighed relative to implicit ones (Tversky & Koehler, 1994). 

 The hypothesis that longer chains highlight more possible disruptions implies that 

subjects do not understand that in interpolations the causal strengths of links should be 

estimated as stronger, the more mechanism components are added. Given that the product 

of contingencies of the interpolated links should equate the overall contingency between 

the two variables in the direct representation, increasing the resolution of the interpolated 
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chain should lead to an average increase of the link contingencies. The more is known about 

the steps of the mechanism, the more the causal strength estimates for the interpolated 

links should approximate determinism. If, by contrast, interpolations are misrepresented as 

lengthening, then it should be expected that the estimates of the causal strengths of the 

links are independent of the length of the interpolated chain. If causal strength estimates 

largely stay invariant regardless of the length of the interpolated chain, a weakening effect is 

predicted as in lengthening scenarios. Our evidence in Experiment 4 supports this 

hypothesis. 

Perspectives for Future Research 

 Our main focus in the present research was on comparing direct relationships with 

interpolated chains. Experiment 5 adds to these studies the first examination of more 

complex causal models. It would be interesting to further study more complex mechanisms 

and explore moderators of the weakening effect. It would, in particular, be interesting to 

explore conditions in which the weakening effect is reversed. 

We have several times pointed out that our claim that interpolated mechanisms 

should not alter our probabilistic beliefs about the linked two variables only strictly applies if 

it is assumed that the context of covariation learning does not differ from the context in 

which interpolations were made. One advantage of mechanism knowledge is that it provides 

us with more precise knowledge about what we should expect when we make predictions in 

new contexts. If, for example, the interpolated chain contains more fine-grained 

representations of relevant enablers, disablers, and alternative causes, this should allow us 

to make more precise predictions when we enter a new context. Context changes may lead 

to an increase of weakening, but strengthening may also be conceivable in both direct and 

indirect relations. It is important to note that context changes do not generally predict a 
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weakening effect. If the new context lacks an enabler that was present in the learning 

context, for example, weakening is predicted, if an enabler is present in the new context that 

was missing in the learning context, strengthening should be observed. Direct causal 

relations implicitly represent disablers, enablers, and alternative causes as well, but there 

these factors are lumped together, which makes the results of transfer harder to predict.  

Another interesting question concerns partial knowledge. Imagine we gain 

knowledge about parts of a complex mechanism but have a hunch that there are other 

components we do not know yet (e.g., alternative paths to the effect); it would be 

interesting to see how predictions are altered when subjects become aware that their 

mechanism knowledge is partial and fragmentary. 

 Another possibility for future research is to explore the interaction between 

predictability assessments and prior knowledge. In discussions with colleagues we were 

sometimes confronted with cases which seem to indicate that mechanism knowledge may 

make a poorly understood initially direct causal relation more plausible, thus possibly 

reversing the weakening effect.1 For example, understanding how a vaccine helps us may 

make its efficiency more plausible than before. We have focused on fairly abstract materials 

for which no prior knowledge was available to be able to study the impact of causal 

structure information that is relatively uncontaminated by prior knowledge. But of course, it 

is well established that prior knowledge affects our probability assessments. Knowledge 

about a causal mechanism typically increases estimates of perceived correlations relative to 

the objective covariation in the data (see, e.g., Fugelsang & Thompson, 2003; Koslowski, 

1996; Perales, Shanks, & Lagnado, 2010). Based on these findings, we may find a reversal of 

the weakening effect if the initial direct causal relation seems implausible according to our 

                                                      
1 We thank Aaron Blaisdell and Keith Holyoak for mentioning this possibility. 
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prior knowledge, but the interpolated links raise the plausibility of the causal relation. This 

mismatch between the direct relations and the knowledge about interpolated links might 

not be a particularly frequent case, but it is certainly conceivable. 

 Another more general question is whether weakening effects may tamper our urge 

to gain more knowledge. Recent research has shown that people tend to know very little 

about mechanisms (Rozenblit & Keil, 2002; Sloman & Fernbach, 2017). Although it is rational 

to believe that knowing more increases the predictability and controllability of the world, 

some people might, based on erroneous intuitions about weakening effects, be reluctant to 

find out more about mechanisms. Causal knowledge revision is certainly an important topic 

for causal reasoning research and should attract more interest in the future. 
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Abstract

We investigate how learning that an established type-level
causal relationship is implemented by human agency affects
people’s conceptualization of this relationship. In particular,
we ask under what conditions subjects continue to perceive the
original root cause as appropriate explanation for the resulting
effect, and under what conditions they perceive the mediating
intentional action as alternative explanation instead. Using a
new experimental paradigm, we demonstrate that mechanisms
involving intentional action lead to intuitions of causal intran-
sitivity, but only when these actions are norm-violating. Poten-
tial generalizations and implications for scientific theory con-
struction are discussed.

Keywords: explanation; causal mechanisms; causal chains;
transitivity; mediators

Suppose you make the observation that in a class of pupils,
all girls get high grades in a gym class, while all boys get low
grades. You get the impression that gender might be an im-
portant factor to explain the grades in this class: being a girl
seems to be causally relevant for a pupil to get high grades.
Suppose further investigations bring to light how this causal
relationship is brought about: being a girl causes you to have
more flexible joints, which in turn causes you to perform bet-
ter in the gym class. Given this information, does being a
girl still explain why someone gets high grades? Intuitively,
it does: the causal relationship of gender on grades is imple-
mented or mediated by a physiological mechanism involving
agility; the mechanism information just specifies how exactly
the causal influence of gender on grades is realized.

Contrast this to your intuitions towards the following al-
ternative information about how exactly gender influences
grades in the observed class: the gym teacher likes girls better
than boys and gives high grades to everyone he likes. In other
words, being a girl causes you to be liked by the teacher, and
being liked by the teacher causes you to receive a high grade.
Intuitively, gender suddenly seems less relevant in explain-
ing the high grades. The teacher’s judgments seem to be an
alternative explanation for the grades rather than a character-
ization of how exactly gender exerts its causal impact on the
grades.

This example illustrates that there are different possible
conceptualizations of causal mechanisms. Some intermediate
causes in chains are seen as mediators explaining how exactly
the root cause brings about its effect, while other intermedi-
ate causes are seen as alternative explanations for the effect in
question, replacing the root cause as appropriate explanation.
Furthermore, the example indicates that both intuitions can
be triggered for one and the same cause-effect relationship

(gender influencing grades) and with constant structural pa-
rameters (e.g., objective contingencies between the involved
variables), depending only on the content of the mechanism
that turns out to realize the relationship in question.

In the present paper, we will begin to investigate the psy-
chological mechanisms that might bring about this switch in
intuitions. We will first conceptualize the issue as causal tran-
sitivity problem and relate it to previous work in the field.
We then turn to the question whether causal mechanisms in-
volving intentional actions of human agents might lead to in-
tuitions of causal intransitivity. The first experiment intro-
duces a new paradigm designed to demonstrate the existence
of the different intuitions towards the introductory example in
laypeople. The second experiment tests two hypotheses as to
what aspects of intentional action lead to intuitions of causal
intransitivity using a different cover story. In the General Dis-
cussion, we point at implications that our results might have
for transitivity intuitions outside the narrow domain of mech-
anisms involving intentional agents.

Transitivity in Causal Chains

Normatively, this issue can be conceptualized as the question
of transitivity in causal chains. According to most classical
accounts of probabilistic causality (e.g., Eells, 1991) and to
the calculus of Bayesian networks (Pearl, 2000), principally,
if A causes B and B causes C, then it follows that A causes
C. Learning about the mechanism that implements a known
causal relationship between A and C should therefore not af-
fect the assessment of this known relationship. Technically,
we can ask whether we should hold the value of B fixed when
assessing the causal impact of A on C. The answer is no be-
cause B is not causally independent of A (see Rehder, 2014).
For many examples, this is intuitively clear: if I want to assess
whether my drinking four pints in the evening (A) causes me
to have a headache on the next day (C), I should not hold fixed
the amount of toxins produced in my body in the meantime
(B). Causality is transitive: A per se is seen to be critical for C
even when it is established that its causal influence is entirely
mediated via B—as in the agility version of the introductory
example.

However, the intuition that causality is transitive in causal
chains is not always observed in the causal judgments of
laypeople. Recently, Johnson and Ahn (2015) presented
subjects with descriptions of numerous token causal chains
(e.g., “Allison exercised for 20 min [A], then Allison became
thirsty [B], then Allison drank a whole bottle of Water [C]”)
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and then asked them to what extent they would say that A
caused B, to what extent B caused C, and to what extent A
caused C. For some examples, like the one above, they found
high ratings for all three causal relationships, indicating tran-
sitivity. For other token chains, however, causality was not
seen as transitive. For example, in “Ned ate very spicy food
[A], then Ned drank a lot of water [B], then Ned had to uri-
nate [C]”, people rendered high causality ratings for A→B
and for B→C, but much lower ratings for A→C. Thus, even
though both links of the chain were seen as highly causal, the
root cause was judged to have only a low causal impact on
the final effect. This is analogous to our intuitions towards
the teacher version of the introductory example: despite the
fact that the teacher’s sympathy (B) is causally dependent on
the pupil’s gender (A), it seems that B is seen as an alterna-
tive cause of the grades (C) rather than as a descendant of A
implementing the mechanism leading from A to C.

Note that in these cases it is not denied that A causes B.
The data by Johnson and Ahn (2015) indicate that people can
be fully aware of this relationship, yet see B in some sense as
an independent cause of C (as it can be causal for C where A
is not). Thus, the judgment that A per se is not causal for C
does not reflect a belief that there is no (indirect) causal con-
nection between A and C. Rather, it seems to reflect the intu-
ition that A’s causal impact on C is mediated via the “wrong”
kind of mechanism. In other words, there seem to be some
mechanisms which are compatible with the notion that the
root cause per se matters for the effect, while there are other
mechanisms which are incompatible with this notion.

Johnson and Ahn (2015) used token causal chains describ-
ing everyday actions of individuals and their effects. Causal
transitivity varied widely across their individual items (see
examples above). They showed that the extent to which such
chains are causally transitive is a function of the extent to
which the chains are represented in semantic memory as one
single chunk (rather than as two separate relationships that
are stored independently). However, the data do not allow
conclusions as to which item properties cause a chain to be
represented one way rather than the other. It thus seems un-
clear how their account could handle our intuitions towards
the introductory example, where new mechanism knowledge
is discovered for a constant unfamiliar type-level causal rela-
tionship which is unlikely to have a pre-established represen-
tation in semantic memory. Additional processes seem to be
at work here.

Intentional Agents Implementing Causal
Chains

Which features of a discovered mechanism determine the
resulting transitivity intuitions? A salient property of the
teacher mechanism in the introductory example is that it in-
volves an intentional agent as realizer of the causal relation-
ship in question, while the agility mechanism is part of a
blind biological process. Previous research suggests that in-
tentional actions are particularly likely to be selected as the

principal cause of terminal effects in unfolding token causal
chains. Hilton, McClure, and Sutton (2009) have shown that
when asked to identify the actual cause of a token event, peo-
ple trace back the antecedent causal chain until they reach an
intentional agent and designate his action to be the principal
cause of the effect—even if the downstream causal process
involves highly abnormal events that would be designated to
be the principal cause in the absence of upstream intentional
agency (see also Hilton & Slugoski, 1986). In other words,
intentional root causes seem to make chains transitive even
when they involve highly abnormal events. Accordingly, one
may suspect that the reverse might also hold: finding out that
a physical root cause influences its effects by affecting in-
tentional agents’ decisions may make the chain intransitive.
Intentional agents may be generally seen as unmoved movers
that initiate causal processes rather than merely transfer ex-
ternal influences, producing intransitive chains and screening
off the influence of the root cause from the explanandum.

However, in the materials used by Hilton et al. (2009),
the intentional actions that were selected as explanations for
their distal effects were usually also morally wrong or at least
highly negligent. The same is true for the teacher’s grad-
ing practice in the introductory example which obviously in-
volves morally dubious criteria. According to Hitchcock and
Knobe (2009), morally abnormal actions tend to be selected
as causes in common-effect structures. Rather than for their
status as intentional actions, the explanations in the causal
chains in Hilton et al. (2009) may have been selected for their
status as especially abnormal events. In this case, intentional
actions that are not norm-violating should not be seen as alter-
native explanations relative to the antecedent cues by which
they are triggered, but as proper mediators instead. Experi-
ment 2 is designed to differentiate between the intentionality
and the abnormality hypotheses.

For our experiments, we did not employ a causal selec-
tion task for the explanation of a single mundane token event.
Rather, we wanted to explore whether the conceptualization
of one and the same type-level causal relationship can be
differentially affected by learning that it is implemented by
different kinds of causal mechanisms. In our experimental
paradigm, we first teach all subjects the existence of a type-
level causal relationship (A→C) and assess (i) how appropri-
ate it would be to state that A is crucial for C. We then provide
different groups of subjects with different information about
the mechanism implementing this relationship (A→B→C,
where the content of B is varied between subjects). After-
wards we assess once again how appropriate it would now be
to state (ii) that A is crucial for C and (iii) that B is crucial
for C. If the second rating for A is as high as the first rating
for A, this will indicate that the mechanism elicited a transi-
tivity intuition: the fact that A causes C via B is compatible
with the notion that A per se matters for C. By contrast, if
the rating for A is decreased in response to learning about a
specific mechanism while the rating for B is at least as high
as the first rating for A, this will indicate that the chain is seen
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to be intransitive: the intermediate cause is conceptualized as
an alternative explanation, replacing A as appropriate expla-
nation for C.

Experiment 1
In the first experiment we sought to establish that the
paradigm outlined above is able to capture the intuitive dif-
ferences displayed in the introductory example.

Participants
The experiment was conducted as an online study. A total
of 171 subjects from the UK completed the experiment, 32
of which were excluded from the statistical analyses because
they failed in a simple attention check question that we asked
at the end of the experiment. The average age of all included
subjects (N = 139, 93 women) was 38 years (SD = 8.62).

Design, Materials, and Procedure
We constructed a complete 2 (Mechanism: Physiology vs.
Teacher) × 2 (Contingency: Deterministic vs. Probabilis-
tic) × 2 (Balance: Boys with high grades vs. Girls with
high grades) between-subjects design. Subjects in all con-
ditions were asked to take the perspective of a scientist in-
vestigating the relationship between pupils’ gender (A) and
their grades in a physical education class (C). In a first learn-
ing phase they received data of a class of ten pupils (five boys
and five girls) in tabular form which showed each pupil’s gen-
der (A vs. ¬A) and whether he or she got a high grade (C)
or a low grade (¬C). Whether being a boy or a girl was des-
ignated as A was counterbalanced with the Balance factor.
When boys had high grades, the grades in question were for
a course in athletics; when girls had high grades, they were
for a course in gymnastics. Half of the subjects learned that
there was a deterministic relationship between gender and
grades, for the other half this relationship was probabilistic
(one exception for each gender). This contingency manip-
ulation was included to explore whether intransitivity intu-
itions can be elicited for both deterministic and probabilis-
tic causal relationships. After having studied this table, par-
ticipants were asked to indicate on an 11-point scale (rang-
ing from 0 to 10) how appropriate they found the following
sentence to describe the concrete observations they have just
made: “The gender of a pupil is crucial for this pupil’s grade
in athletics/gymnastics” (we call this appropriateness rating
[A→C]pre because it is measured prior to the introduction
of mechanism information). At this point, we expected that
subjects would have formed the impression that, within the
observed sample, gender influences grades (A→C), leading
them to render unanimously high appropriateness ratings.

The crucial mechanism manipulation was introduced in a
second learning phase. Subjects were told that they would
have come up with a hypothesis about the underlying mecha-
nism. Half of them (Mechanism: Physiology) were told that
they suspected boys to develop higher muscularity than girls
which in turn would lead them to receive higher grades in
athletics. (In the other Balance condition, girls were sus-

pected to develop higher agility than boys which in turn
would lead them to receive higher grades in gymnastics.)
The other half (Mechanism: Teacher) was told that they sus-
pected the teacher to like boys better than girls (and vice versa
for the other Balance condition), leading boys (girls) to re-
ceive higher grades. In all conditions, subjects read that they
went back to collect additional data from the same class cor-
responding to their hypothesis. These data were then pre-
sented in a new version of the table which now included an
additional column representing each pupil’s value on the sus-
pected mediating variable (B [high] vs. ¬B [low]; in both
Contingency conditions, this new variable deterministically
predicted the grades). After having studied this extended ta-
ble, subjects were again asked to indicate how appropriate it
would be to state that A is crucial for C ([A→C]post), and
also how appropriate it would be to state that B is crucial for
C ([B→C]post) using the same question format (B being de-
scribed as “the muscularity of a pupil/the agility of a pupil/the
teacher’s sympathy for a pupil”, depending on condition).
We expected continuously high ratings for (A→C)post in the
Physiology condition and a drop in ratings for (A→C)post in
the Teacher condition.

Afterwards, we assessed contingency estimates for all
three relationships from memory (i.e., P[C|A] vs. P[C|¬A],
P[B|A] vs. P[B|¬A], and P[C|B] vs. P[C|¬B]), assessed on
six separate 11-point scales ranging from 0 (impossible) to
100 (certain) to see if subjects in both Mechanism conditions
based their judgments on the same impression of the objective
probabilities. In the Probabilistic conditions, we furthermore
asked them to indicate the conditional dependence of C on A
given constant values of B (i.e., P[C|A∧B] vs. P[C|¬A∧B],
and P[C|A∧¬B] vs. P[C|¬A∧¬B]) to see if they understood
that, in the observed sample, C was independent of A when
B was held fixed (regardless of the Mechanism condition).
Finally, we wanted to know how plausible they found each
of the described causal relationships (A→C, A→B, and
B→C) according to their prior real world knowledge, regard-
less of the fictional data from the experiment.

Results
The descriptive results for the appropriateness ratings are dis-
played in Figure 1. We conducted a global 2 (Mechanism:
Physiology vs. Teacher)× 2 (Contingency: Deterministic vs.
Probabilistic) × 2 (Balance: Boys high vs. Girls high) × 3
(Rating: (A→C)pre vs. (A→C)post vs. (B→C)post, within-
subject) mixed ANOVA. Since there was neither a main effect
of Balance, F1, 131 < 1, nor any significant interaction effect
including Balance, largest F2, 262 = 2.19, data in Figure 1 are
averaged across this factor. There was a main effect of Rat-
ing, F2, 262 = 22.00, p< .001, η2

p = .14, and a significant in-
teraction of Rating × Contingency, F2, 262 = 5.99, p= .003,
η2

p = .04. There was also a trend for an interaction of Rating
×Mechanism, F2, 262 = 2.87, p = .06, η2

p = .02.
The main prediction that we made was that we would see

a distinct drop of appropriateness ratings for (A→C)post rel-
ative to (A→C)pre selectively within the Teacher conditions.
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A planned contrast testing whether this difference was larger
in the Teacher compared to the Physiology condition con-
firmed this prediction, t131 = 2.97, p< .05, r = .25. Further-
more, the ratings for (B→C)post were at least as high as the
ratings for (A→C)pre in all conditions (see Figure 1). The in-
crease in appropriateness ratings for (B→C)post in the Prob-
abilistic conditions can be explained by the fact that B is a
deterministic predictor for C while A is not (i.e., the proba-
bilistic element lies in A→B).
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Figure 1: Group means (Errorbars = 95% CI) of appropriate-
ness ratings in Experiment 1.

An analysis of the subjects’ contingency estimates showed
that, globally, subjects represented the contingencies con-
tained in the learning data quite adequately, apart from
generally underestimating the strength of the determinis-
tic relationships. Crucially, this pattern was similar in
both the Physiology and the Teacher condition. Fur-
thermore, participants in the Probabilistic conditions rec-
ognized that A and C were conditionally independent
given constant levels of B (P[C|A∧B]≈P[C|¬A∧B] and
P[C|A∧¬B]≈P[C|¬A∧¬B]). This pattern was also consis-
tent in both Mechanism conditions. The pattern of con-
tingency estimates therefore cannot account for the differ-
ences we observed for the appropriateness ratings between
the Mechanism conditions. The same holds for the plausibil-
ity ratings: the relationships A→B and B→C were rated to
be equally plausible for both mechanisms.

Discussion
The results of this experiment show that acquiring different
mechanism knowledge can differentially affect the concep-
tualization of a given type-level causal relationship. When
effects of gender on grades in a gym class were mediated via
a physiological process, this was seen as compatible with the
notion that gender per se matters for the grades. This was not
the case when the relationship was mediated via the teacher’s
personal preference for the pupil. In this case, subjects re-
vised their earlier judgment that gender was critical for the
grade and attributed the grades to the teacher’s sympathy in-
stead, even though they were aware that the teacher’s prefer-
ence was causally affected by the pupils’ gender. This result
cannot be explained by differences in encoded contingencies
or prior plausibility intuitions for the different mechanisms.

Experiment 2
In Experiment 2, we attempted to replicate the phenomenon
using a more artificial cover story. This story allowed us to
differentiate between the intentionality and the abnormality
hypotheses developed in the theory section: is the root cause
always screened off when the mechanism involves an inten-
tional agent, or only when this agent’s intentions are morally
dubious?

Participants
The experiment was conducted as an online study. We re-
cruited 232 subjects from the UK, 31 of which failed in the
attention test and were excluded from all analyses. The av-
erage age of all included subjects (N = 201, 118 women) was
36 years (SD = 8.14).

Design, Materials, and Procedure
We used the same experimental paradigm as in Experiment 1.
This time, we implemented four between-subjects conditions
describing different mechanisms underlying the same causal
relationship. Subjects in all conditions were asked to imag-
ine they were at a funfair where they were observing a swing
tossing passengers around. They read that sometimes after
a passenger had entered the swing a red flashlight came on,
whereupon the passenger had to leave the swing without hav-
ing taken a ride. Participants read that they would have gained
the impression that the flashlight (C) came on more frequently
for corpulent passengers (A). Upon studying the learning data
about a deterministic relationship between A and C across ten
observed passengers (the first five of them corpulent, the last
five not corpulent), they rendered their (A→C)pre appropri-
ateness rating.

We then told subjects in the different conditions that they
would have come up with one of four hypotheses about the
underlying mechanism. In the first condition (Scale) they
were told that they suspected the flashlight to be part of a
safety mechanism. They believed a scale to be built into the
swing which causes the flashlight to come on whenever the
loading exceeds a critical threshold. This condition was in-
tended to provide a baseline for unequivocal judgments of
transitivity, analogous to the Physiology condition in Experi-
ment 1. In the second condition (Accurate Operator) the sub-
jects’ hypothesis was that the operator intends to guarantee
the safety of his costumers, and that whenever he judges a
passenger to be too corpulent for his swing he activates the
flashlight. This condition was intended to provide a mech-
anism involving an intentional agent but otherwise being
closely matched to the Scale condition. According to the in-
tentionality hypothesis, this chain should nonetheless be seen
as intransitive, while it should be seen as transitive according
to the abnormality hypothesis since the operator does not vio-
late a norm. The mechanism hypothesis of the third condition
(Biased Operator) was that the operator does not like corpu-
lent people and enjoys embarrassing them, and that whenever
he judges a passenger to be too corpulent for his taste, he acti-
vates the flashlight. This condition was intended as providing
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an intentional mechanism analogous to the Teacher condition
in Experiment 1 which should elicit judgments of intransi-
tivity according to both the intentionality and the abnormal-
ity hypothesis. In the last condition (Central Computer), the
subjects’ hypothesis was that a central computer supervising
the electricity supply detects irregularities at unpredictable
times, and then generates an electronic signal that causes the
flashlight to come on. The co-occurrence of corpulence and
flashlight in the observed sample would have resulted from
mere coincidence. This condition was intended to create a
structure in which A turned out to be actually causally irrel-
evant for C. B (the central computer) caused the effect, and
the relationship between A and C in the sample was merely
due to a coincidental correlation between A and B in the ob-
served sample. This condition thus provides a baseline for
an unequivocal alternative explanation. The crucial question
is where intuitions towards the mechanisms involving inten-
tional operators fall within the space that is spanned between
Scale (a clear mediator) and Central Computer (a clear alter-
native explanation).

In all conditions, subjects read that they went over to the
operator and asked him for information concerning the mech-
anism. The operator confirmed their hypothesis in all con-
ditions and told them for the last ten passengers whether or
not the scale had detected a threat to the passenger/he had
detected a threat to the passenger/he had not liked the pas-
senger/the central computer had detected irregularities in the
electricity supply (depending on condition). After having
studied the corresponding extended table in which all three
relationships were deterministic, subjects again rendered
their appropriateness ratings for (A→C)post and (B→C)post.
Finally, subjects indicated their contingency estimates for all
three relationships from memory. Plausibility ratings were
not collected.

Results
The descriptive results for the appropriateness ratings are dis-
played in Figure 2. We conducted a global 4 (Condition:
Scale vs. Accurate Operator vs. Biased Operator vs. Central
Computer) × 3 (Relationship: (A→C)pre vs. (A→C)post
vs. (B→C)post, within-subject) mixed ANOVA. There was
no main effect of Condition, F3, 197 = 1.81, but a main effect
of Relationship, F2, 394 = 7.48, p< .001, η2

p = .04. The global
Relationship × Condition interaction was not significant,
F6, 394 = 1.74, p = .11, η2

p = .03. However, planned contrasts
revealed that the decrease in appropriateness ratings from
(A→C)pre to (A→C)post did not differ between Scale and
Accurate Operator, t197 < 1, but was larger compared to Scale
both in the Biased Operator condition, t197 = 2.41, p< .05,
r = .17, and in the Central Computer condition, t197 = 2.81,
p< .01, r = .20. Furthermore, the decrease was as large in Bi-
ased Operator as in Central Computer, t197 < 1. At the same
time, (B→C)post was not smaller than (A→C)pre in any of
the conditions, largest t197 = 1.48.

The contingency estimates were similar across all four
mechanism conditions for all three causal relationships
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Figure 2: Group means (Errorbars = 95% CI) of appropriate-
ness ratings in Experiment 2.

(A→B, B→C, A→C). The only exception was that ∆P for
A→B tended to be higher in the Scale condition than in the
other three conditions, a difference that was significant in the
comparison with Biased Operator, t197 = 2.28, p< .05. This
indicates that the contingency between corpulence and the bi-
ased operator’s judgment was perceived to be weaker than the
contingency between corpulence and threat detection by the
scale, despite identical learning data. While this difference
may add to the decrease in (A→C)post in the Biased Oper-
ator condition, the overall pattern of contingency estimates
cannot fully account for the overall pattern of appropriateness
ratings.

Discussion
The results of Experiment 2 demonstrate that involving an in-
tentional agent is not a sufficient property for a mechanism
to elicit judgments of intransitivity. Agents intending to ac-
curately transfer an objective signal from A to C seem to be
conceptualized akin to a mechanical process serving the same
function. However, if the same relationship is dependent on
an agent’s highly idiosyncratic (and morally dubious) prefer-
ence structure, the physical root cause is screened off from
the explanandum to the same extent as if it was merely a co-
incidental, causally irrelevant confound.

General Discussion
In two experiments, we have demonstrated that the conceptu-
alization of one and the same established type-level causal
relationship can be differentially affected when knowledge
about different causal mechanisms is acquired. Some mecha-
nisms (e.g., physiological processes) are compatible with the
notion that the root cause per se matters for the effect, while
others (e.g., biased judges) provide an alternative explana-
tion, leading the root cause to be seen as a less appropriate
explanation for the effect. Our data indicate that these dif-
ferences are not brought about by different causal strength
assessments, nor by different plausibility intuitions. Also, in-
volving an intentional agent does not constitute a sufficient
condition for a mechanism to elicit intuitions of intransitivity.
In the contexts we investigated, this intuition seems to depend
crucially on the intentional agent being morally abnormal.
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This latter finding may indicate that a more general psycho-
logical mechanism may underlie our findings which might
make our framework applicable to intransitivity intuitions
outside the narrow scope of mechanism involving human
agents. Immoral human agents may merely be a very
salient instance of abnormal mechanisms more generally.
Recently, Kominsky, Phillips, Gerstenberg, Lagnado, and
Knobe (2015) have argued that moral and statistical ab-
normality of potential causes function similarly in eliciting
counterfactual possibilities that in turn have similar down-
stream effects of the assessment of other causes in the same
common-effect network. It is possible that similar general-
izations hold in our case. In the Physiology condition from
Experiment 1, the mechanism is implemented in every single
pupil in a lawlike manner. Thus, it can be assumed that an
A→C relationship brought about by this mechanism will be
stable across most perturbations of the entity implementing
the mechanism in each token case, both within and beyond
the observed sample. Contrast this with the teacher example:
the observed type-level A→C relationship is entirely depen-
dent on this particular teacher implementing the mechanism
in the observed sample. Replacing the teacher with pretty
much any colleague would presumably make the A→C rela-
tionship disappear. Even though A is doubtlessly an indirect
cause of C in the observed sample, explaining C in terms of
A might feel inadequate because the relationship can be ex-
pected to be highly sensitive to minor perturbations of the
boundary conditions provided by the particular teacher im-
plementing the mechanism in the observed sample (see also
Garfinkel, 1981).

So far, these are only speculations as to how far our find-
ings may generalize which still need to be empirically tested
with materials outside the domain of human agency. In case
of success, this account may be applicable not only to as-
pects of everyday causal cognition, but even to psychological
processes underlying scientific theory construction. When-
ever a scientific theory is about a causal chain structure (e.g.,
process X influences process Y, which in turn leads to effect
Z), the issue discussed in this paper arises: if the researcher
wants to assess whether process X per se explains outcome
Z, should she hold process Y constant? If she conceives of
process Y as a mediator, the answer is definitely no. But
there might be cases in which, despite the underlying chain
structure, she conceives of process Y as an alternative expla-
nation of effect Z. Sometimes, it does not seem clear which
of these conceptualizations is more adequate—yet, the deci-
sion for one of them will crucially shape the methodology
and conclusions of the subsequent research (e.g., decisions
about whether process Y is to be controlled or to be left free
to covary with X).
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Abstract
When A causes B and B causes C, under what conditions is
A a good explanation for the occurrence of C? We propose
that distal causes are only perceived to be explanatory if the
causal mechanism is insensitive to inessential variations of
boundary conditions. In two experiments, subjects first ob-
served deterministic A→B→C relationships in a single ex-
emplar of an unknown kind. They judged A to be crucial for
C by default. However, when they subsequently learned that
the causal mechanism fails to generate the A→C dependency
in other exemplars of the same kind, subjects devalued A as
a crucial explanation for C even within the first exemplar. We
relate these findings to the idea that good explanations pick out
portable dependency relations, and that sensitive causes fail to
meet this requirement.
Keywords: explanation; causal mechanisms; causal chains;
sensitivity; portability

Introduction
Causal relationships are implemented by causal mechanisms
(Machamer, Darden, & Craver, 2000). If we say that one
event (A) causes another event (C), we generally assume that
there is some process leading from A to C that can princi-
pally be discovered, even if we do not yet know what the
actual mechanism is. Accordingly, the causal arrow in nota-
tions such as A→C is sometimes interpreted as a “mecha-
nism placeholder” (Pearl, 2000).

When mechanism knowledge about a particular causal re-
lationship (e.g., A→C) is made explicit, the resulting causal
model takes the form of a causal chain (e.g., A→B→C,
where B is an intermediate cause implementing the mech-
anism). The current research asks how such integration of
mechanism knowledge affects people’s conceptualization of
the original causal relationship. More specifically, the ques-
tion is which properties of mechanism B can affect people’s
impression of the importance of A for explaining C.

Intuitively, there are two ways to interpret the causal role
of B in causal chains. First, B could be seen as a mediator im-
plementing the causal influence of A on C. Under this read-
ing, A continues to be seen as explanatory for C, even though
its causal influence is completely mediated via B. Second, it
could be seen as an alternative explanation for the occurrence
of C, screening off the influence of A on C. The fact that, if
we know the value of B, A adds nothing to explaining C, pro-
vides a reason to devalue A as appropriate explanation of C
under this interpretation.

Nagel and Stephan (2015) showed that both interpreta-
tions can arise when subjects learn that different mechanisms
implement one and the same type-level causal relationship.
They had their subjects learn a strong dependency of grades

in a gym class (C) on the pupils’ gender (A) from fictional
covariation data. Subjects indicated strong agreement with
the claim that, within the observed sample, a pupil’s gender
was crucial for his or her grade. In a second learning phase,
half of the subjects learned that the A→C relationship was
mediated by a genetically determined physiological process
(B1), while the other half learned that it was mediated by the
gender preferences of the teacher (B2). Afterwards, subjects
in the physiological mechanism condition continued to en-
dorse the statement that a pupil’s gender was crucial for this
pupil’s grade (indicating that B1 was interpreted as a media-
tor of the original A→C relationship), while subjects in the
teacher mechanism condition devalued gender as crucial ex-
planation for the grades (indicating that B2 was interpreted as
an alternative explanation for C).

Both conditions were equivalent in terms of objective
causal structure and observed dependency patterns, so it
seems the difference in interpretation results from some as-
pect of the manifold content-related differences between both
contrasted mechanisms. One salient hypothesis is that in-
tentional agents, like the teacher, might be seen as initiators
of causal sequences (unmoved movers) and therefore always
screen off the influence of upstream physical preconditions
of their actions from downstream effects. Blind physical pro-
cesses like genetics, by contrast, may not have this quality
and may thus be regarded as mere mediators of the influ-
ence of upstream root causes. In a second experiment, Nagel
and Stephan (2015) ruled out this hypothesis. They presented
their subjects with a scenario in which a physical signal (A)
was picked up by a human agent who deliberately reacted to
the signal (B) to produce a final outcome (C). Subjects re-
peatedly observed this deterministic causal chain in all con-
ditions. Half of the participants learned that the agent had a
benign motivation in implementing the A→C chain, while
the other half learned that he had a malevolent motivation.
Afterwards, they were asked to what extent it was appropriate
to state that the original signal (A) vs. the agent’s reaction (B)
was crucial for the occurrence of the outcome (C). It turned
out that in case of the benign agent, both the distal signal and
the proximal action were judged to be equally crucial for the
occurrence of C. The distal physical cause thus retained its
explanatory power and was seen to bring about the outcome
by means of human agency. By contrast, if the agent had a
morally dubious motive, the distal cause was devalued as ex-
planation despite a perfect dependency relation with the out-
come in the observed sample; proximal human agency served
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as alternative explanation for the outcome instead. This find-
ing strongly suggests that it is not an agent’s intentionality per
se that leads to devaluation of upstream causes as explana-
tions for downstream effects, but rather some other property
that is related to the motivation of the agent. In the remain-
der of this paper, we will outline and test the hypothesis that
this property does not reside exclusively in moral qualities
of intentional agents, but quite generally reflects inferences
about whether the mechanism can be expected to generalize
to other, inessentially different contexts.

Sensitivity and Explanatory Relevance

Woodward (2006) investigated the human practice of making
causal claims. He noted that causal claims require not only
that the effect be counterfactually dependent on the cause,
but also that this counterfactual dependence continue to hold
under varied boundary conditions. Causal relationships that
do not fulfill this second requirement are called sensitive, and
Woodward (2006) argues that sensitive causal relationships
are regarded as deficient despite a strong dependence rela-
tionship under the conditions in which they do obtain. Good
causes are those that not only bring about their effects in the
narrow context of actually observed circumstances, but would
continue to do so in different contexts. The requirement for
good causes to be insensitive resonates with philosophical
and psychological accounts of explanation. Many theorists
have argued that good explanations tend to pick out factors
that are generalizable beyond the concrete set of observations
that presently is to be explained (Garfinkel, 1981; Hitchcock,
2012; Lombrozo & Carey, 2006). This ensures that the gener-
ated explanation will be useful for making predictions and for
planning interventions in future similar situations (Lombrozo,
2010).

One reason for high sensitivity of causal relationships is
that the mediating mechanism works reliably only under quite
specific boundary conditions, but is easily disturbed in other,
similar situations. We propose that whenever people find
out that an observed causal relationship is implemented by
a mechanism that is highly sensitive in this sense, they de-
value the distal cause as explanation for the terminal effect.
To illustrate, consider again the scenarios used by Nagel and
Stephan (2015). If the influence of gender on grades is medi-
ated by a genetically determined physiological mechanism,
this implies that the relationship will continue to hold in
future observations with different samples of pupils, which
makes the A→C relationship insensitive. The teacher mech-
anism, by contrast, implies that this relationship depends on
the presence of highly peculiar boundary conditions which
will rarely be met in other, similar situations (as most other
teachers, hopefully, will not exhibit the same bias). This
makes the observed A→C relationship highly sensitive—it
will break down as soon as we leave the narrow context of
the class that was actually observed in the sample. It is rec-
ognized that gender will not generally influence grades and
is therefore considered a poor explanation for the grades even

within the observed sample.
The mechanisms compared by Nagel and Stephan (2015)

differed on many dimensions other than sensitivity, includ-
ing intentional agency and moral abnormality. Our goal in
the present experiments is to isolate the sensitivity of the me-
diating mechanism. We created new experimental material
from the domains of biology and physics in which we ma-
nipulated a given mechanism’s sensitivity purely in statistical
terms. We first presented subjects with a single exemplar of
an unknown natural kind or artifact and let them discover a
deterministic A→B→C chain within this entity. In a subse-
quent learning phase, we showed subjects the same exemplar
again, but this time in the company of several other exem-
plars of the same kind with identical appearance. One half of
the subjects saw that the new exemplars behaved just like the
first exemplar in terms of the A→B→C dependency pat-
tern. The other half saw that only the first exemplar once
again showed the same dependency pattern, while in all other
exemplars the presence of A failed to lead to the presence
of B (and, hence, C). Subjects in both conditions were then
asked how appropriate it was to say that A was crucial for the
presence of C within the first exemplar only which had con-
stantly displayed perfect dependency relations in both con-
ditions. We predicted reduced appropriateness ratings in the
condition in which the dependence of C on A did not gener-
alize to other exemplars of the same kind.

In the first experiment, we tested and confirmed these pre-
dictions in the domain of biology. In the second experiment,
we replicated the findings in the domain of artifacts and ad-
ditionally controlled for the relative complexity of the poten-
tially explanatory variables A and B.

Experiment 1
Participants
The experiment was conducted as an online study. A
total of 150 subjects were recruited from a panel
(www.pureprofile.com), 44 of which (29%) were removed
prior to the analyses because they did not complete the survey
or failed to solve a simple attention check question at the end.
The mean age of all included subjects (N = 106, 80 women)
was 37 years (SD = 8.16). Included subjects received a pay-
ment of £ 6 per hour.

Design, Materials, and Procedure
Subjects were randomly allocated to the conditions (Sensitiv-
ity: Sensitive vs. Insensitive). They were asked to take the
perspective of a marine biologist who discovered a single ex-
emplar of deep sea fish and called it “Fish #1”. Their task
was to test whether noise (A) leads to activity in the brain of
the fish (B) and finally to an illumination of the fish’s antenna
(C). We then presented our subjects an animation of Fish #1
(see Figure 1). When participants pressed the “Play” button,
they saw sound waves coming out of the speaker. About half
a second later, the brain activity device’s monitor displayed a
flickering amplitude moving across the screen. Finally, about
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one second later, the fish’s flash bulb turned from blue to yel-
low. If participants hit the stop button, all variables returned
to their initial state. Subjects could (de-)activate the loud-
speaker as often as they wished.

Figure 1: Screenshot of the animation used in the first learn-
ing phase of Experiment 1 while all three variables are active.
Letters A, B, and C were not shown to participants.

When participants felt they had learned enough about the
relationships, they proceeded to the first question screen on
which they were asked how appropriate the following state-
ments were for describing the observations they had just made
of Fish #1. The first statement was “The presence of sound
waves is crucial for Fish #1’s antenna to lighten up” (appro-
priateness rating [A→C]pre), and the second statement was
“Activity of the brain area is crucial for Fish #1’s antenna to
lighten up” (appropriateness rating [B→C]pre). We used two
independent rating scales to allow participants to judge both
causes as equally explanatory, while at the same inviting them
to see both statements as contrastive alternatives by using the
word “crucial”. Participants provided their judgments on 11
point rating scales ranging from “0 = not at all appropriate”
to “10 = very appropriate” for each statement. We expected
equally high ratings for both statements, indicating that brain
activity is seen as a mediator and sound waves are seen to be
explanatorily relevant.

The experimental manipulation was applied after subjects
had given their baseline ratings. All participants read that they
had caught nine additional exemplars of the same kind of fish.
On the next screen, they saw a large animation showing all ten
fish (consecutively labelled Fish #1 to Fish #10), each in the
same set-up as shown in Figure 1. Below the ten fish, there
was a device with a play- and stop-button which they could
use to (de-)activate all ten loudspeakers simultaneously. In
both conditions, Fish #1 again reacted exactly as in the first
learning phase. The crucial difference between both condi-
tions was the behavior of the additional nine fish exemplars.
In the insensitive condition, all other fish behaved exactly like

Fish #1, while in the sensitive condition, none of the other fish
reacted to the activation of the loudspeaker with brain activ-
ity or antenna lightning. This manipulation was intended to
confirm in the insensitive condition the assumed prior expec-
tation that the A→C dependence is exportable from Fish #1
to the whole kind, while subjects in the sensitive condition
should conclude that the A→C dependence is not exportable
beyond the narrow context of Fish #1.

After having made these additional observations, subjects
were asked to reconsider the results of their previous exper-
iment with Fish #1 only and to answer the same two ques-
tions again in light of their new knowledge about the whole
swarm of fish. The appropriateness ratings (A→C)post and
(B→C)post were measured exactly as the baseline ratings de-
scribed above. Our central prediction for the sensitive con-
dition was that the (A→C)post ratings should drop consider-
ably because the A→C dependency is not exportable beyond
the context of Fish #1. The (B→C)post appropriateness rat-
ings, by contrast, should not be reduced by the swarm infor-
mation. Brain activity remains a good predictor of antenna
flashing across the whole swarm. In the insensitive condi-
tion, of course, neither of the ratings should be affected by
the swarm data.

Finally, we wanted to make sure that participants en-
coded the contingencies between the variables accurately
both within Fish #1 and across the whole swarm of fish. On a
first screen, participants were prompted to recall what they
had learned about Fish #1 and were asked six conditional
probability questions concerning Fish #1 only. For example,
P(C|A) was assessed with the question “How likely is it for
Fish #1’s antenna to lighten up given that sound waves are
present?” and an 11 points rating scale ranging from 0 (im-
possible) to 100 (certain). Analogous questions were asked
for P(C|¬A), P(B|A), P(B|¬A), P(C|B), and P(C|¬B). On
a second screen, the same six questions were repeated with
the whole swarm as reference class. These twelve estimates
were used to compute contingency estimates (∆P) for each of
the three causal relationships both at the exemplar level and
at the swarm level. Equally high contingency estimates at the
exemplar level for A→C and B→C would demonstrate that
the expected effects on the appropriateness ratings would not
be due to different dependency assumptions within the exem-
plar, but rather due to sensitivity of the A→C relationship
across the whole kind.

Results
The descriptive results for the appropriateness ratings are dis-
played in Figure 2a. We conducted a three-way 2 (Sensi-
tivity: Sensitive vs. Insensitive, between-subjects) × 2 (Re-
lationship: A→C vs. B→C, within-subject) × 2 (Rat-
ing Position: Pre vs. Post, within-subject) mixed ANOVA.
We obtained a significant two-way Sensitivity × Position
interaction, F1, 104 = 8.61, p< .01, η2

g = .014, indicating that
the swarm information affected appropriateness ratings in
the sensitive condition more than in the insensitive condi-
tion. More importantly, this interaction was qualified by a
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Figure 2: Group means (error bars = 95% CI) of appropriateness ratings (a) and contingency estimates (b) in Experiment 1.

marginally significant three-way Condition × Position × Re-
lationship interaction, F1, 104 = 3.64, p< .06, η2

g = .003, indi-
cating that the selective decrease of ratings from pre to post in
the sensitive condition was more pronounced for the A→C
relationship than for the B→C relationship, as predicted by
our account.

To assess subjects’ contingency estimates for the three
relationships, we calculated each subject’s ∆P estimate for
each relationship both within Fish #1 and across the whole
swarm of fish. For example, the contingency estimate for the
A→C relationship within Fish #1, ∆P(A→C)Exemplar, was
calculated by subtracting each subject’s P(C|¬A)Exemplar rat-
ing from the same subject’s P(C|A)Exemplar rating. The con-
tingency estimates across the whole swarm were calculated
analogously using the conditional probability judgments for
the whole swarm. The descriptive results are summarized
in Figure 2b. Most importantly, the ∆P(A→C)Exemplar es-
timates in the sensitive condition were not lower than the
∆P(B→C)Exemplar estimates. This finding rules out the alter-
native explanation that the selective drop in the (A→C)post
appropriateness ratings in the sensitive condition results from
selectively decreased dependency estimations within Fish #1
for this particular relationship.1

1The surprisingly low ∆P(B→C)Kind estimate in the sensitive
condition resulted from very low P(C|B)Kind ratings. The observa-
tion that in Fish #1 (the only exemplar in which brain activity was
ever recorded) brain activity reliably led to antenna illumination did
not suffice to make subjects generalize this relationship across the
whole kind. Hesitance to generalize from sparse data, however, is
different from gathering positive evidence for sensitivity. The find-
ing that subjects continued to regard brain activity as the crucial ex-
planatory factor within Fish # 1 despite low kind-general contin-
gency estimates thus does not directly disprove our hypothesis, but
is certainly a finding that needs further investigation.

Discussion
In this experiment, we have demonstrated that sensitive
mechanisms reduce the explanatory relevance of distal causes
in causal chains. Our subjects first learned that, within the
narrow context of a single exemplar of a biological kind,
cause A deterministically produced effect C, and that this
causal relationship was always mediated by mechanism B.
At this point, they interpreted the B to be a mediator of the
observed A→C relationship and correspondingly found that
A and B were equally crucial for the occurrence of C. How-
ever, if they subsequently found out that cause A failed to ac-
tivate mechanism B in all other exemplars of the same kind,
this affected their representation of the perfect dependency
relation within the initially observed exemplar. Even within
this exemplar, they now judged A to be less crucial for the
occurrence of C than the more proximal B, indicating that
A became deficient as explanation for C, despite the perfect
A→C dependency relation that was observed throughout for
this exemplar.

Experiment 2
In the second experiment, our main goal was to replicate the
findings from Experiment 1 in the domain of artifacts. Fur-
thermore, we made the contents of causes A and B more sim-
ilar to each other in order to rule out alternative explanations
for their differential treatment in the post-ratings. In Exper-
iment 1, A was a simple, physical variable external to the
system under study, while B was a complex, physiological
variable internal to the system. In Experiment 2, we used
only internal, physical variables that varied in complexity. We
counterbalanced the assignment of the simple and the com-
plex variable to the positions of distal cause A and proximal
cause B. We expected the same pattern of results as in Experi-
ment 1 under both assignments, showing reduced explanatory
relevance of the distal cause results from mechanism sensitiv-
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ity per se, regardless of its surface characteristics.

Participants
We recruited and compensated 331 subjects as in Experiment
1. 115 (35%) were removed prior to analysis according the
same criteria as above. The mean age of all included subjects
(N = 216, 109 women) was 40 years (SD = 8.36).

Design, Materials, and Procedure
Subjects were randomly allocated to one of four conditions
that resulted from a 2 (Sensitivity: Sensitive vs. Insensi-
tive) × 2 (Complexity of Mechanism: Complex vs. Simple)
between-subjects design. They encountered an exemplar of
an unknown machine, “Machine #1”, with three visible de-
vices: a single rack wheel, a complex system of rack wheels,
and a fan (see Figure 3). Subjects in the complex mechanism
condition saw the three devices in the arrangement shown in
Figure 3, while for subjects in the simple mechanism con-
dition, the positions of the single wheel and the complex
system of wheels were reversed. The procedure was analo-
gous to Experiment 1. In a first learning phase subjects set
the leftmost device in motion and observed that this was fol-
lowed by movement of the device in the middle, which was in
turn followed by movement of the fan on the right. Switch-
ing off the leftmost device resulted in subsequent inertia of
all variables. On the next screen, we assessed appropriate-
ness ratings (A→C)pre and (B→C)pre as in Experiment 1.
In the second learning phase, subjects were shown Machine
#1 again together with five additional machines with identi-
cal surface features, consecutively labelled “Machine #2” to
“Machine #6”. They could separately intervene on each ma-
chine’s leftmost device as often as they wished. In the In-
sensitive condition, all six machines behaved just as Machine
#1 in the first learning phase. In the Sensitive condition, Ma-
chine #1 also worked just as before, but in none of the addi-
tional machines did the device in the middle or the fan ever
turn on. On the following screens, subjects again indicated
their (A→C)post and (B→C)post appropriateness ratings as
well as their exemplar-specific and kind-general conditional
probability judgments analogous to Experiment 1.

Results
The descriptive results for the appropriateness ratings are dis-
played in Figure 4. We conducted a four-way 2 (Sensitivity:
Sensitive vs. Insensitive, between-subjects) × 2 (Relation-
ship: A→C vs. B→C, within-subject)× 2 (Rating Position:
Pre vs. Post, within-subject)× 2 (Complexity of Mechanism:
High vs. Low, between-subjects) mixed ANOVA. We again
obtained a significant two-way Sensitivity× Position interac-
tion, F1, 212 = 13.02, p< .001, η2

g = .01, indicating that the in-
formation about the additional machines affected appropriate-
ness ratings in the sensitive condition more than in the insen-
sitive condition. More importantly, this interaction was again
qualified by a significant three-way Sensitivity × Position ×
Relationship interaction, F1, 212 = 12.23, p< .001, η2

g = .003,
indicating that the selective decrease of ratings from pre to

A B C 

Figure 3: Screenshot of the animation used in the first learn-
ing phase of Experiment 2. Devices A and B were reversed in
the Simple Mechanism condition. Letters A, B, and C were
not shown to participants.

post in the sensitive condition was more pronounced for the
A→C relationship than for the B→C relationship, just as in
Experiment 1. The assignment of the single wheel and the
complex system of wheels to distal cause (A) vs. proximal
cause (B) did not affect the results, nor did this factor interact
with any of the other variables in the design. The data shown
in Figure 4 is therefore collapsed across this factor.
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Figure 4: Group means (error bars = 95% CI) of appropriate-
ness ratings in Experiment 2.

Subjects’ contingency estimates were analyzed analo-
gous to Experiment 1 and yielded analogous effects. The
∆P(A→C)Exemplar estimates in the sensitive condition were
again as high as the ∆P(B→C)Exemplar estimates. As before,
this rules out that the selective drop in A→C appropriateness
ratings results from decreased A→C dependency estimates
within the focal entity.
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Discussion
In this experiment, we have shown that the finding that sensi-
tive mechanisms lead to devaluation of distal causes general-
izes to the domain of artifacts. If setting a physical device in
motion (A) leads to movement of a second device (B), which
in turn sets in motion a third device (C), both A and B are
seen as equally crucial for the movement of C. However, if
it is later learned that this dependency does not generalize to
other exemplars of the same kind of machine, people revise
their interpretation of the chain even within the first exemplar.
They now judge the distal cause to be less crucial for the oc-
currence of the effect than before, and as less crucial than the
more proximal cause that mediates the relationship. The ef-
fects were even cleaner than in Experiment 1, despite the fact
that we made causes A and B more similar to each other and
even counterbalanced their contents. This supports our hy-
pothesis that high sensitivity of mechanisms per se leads to
an interpretation of the mechanism as alternative explanation
rather than as a mediator of the original relationship.

General Discussion
In two experiments, we have demonstrated that sensitive
mechanisms tend to be seen as alternative explanations of
their effects rather than as mediators of the causal influence
of a distal cause. When people learn about a new indirect
causal relationship in a single context, their default intuition
seems to be that the distal cause is a crucial contributor to the
terminal effect. However, if they afterwards realize that the
mechanism generating the dependency between distal cause
and terminal effect breaks down in most other similar con-
texts, they revise this intuition and devalue the causal contri-
bution of the distal cause. The information that the mediat-
ing mechanism requires highly specific, uncommon boundary
conditions makes clear that the observed A→C dependency
is highly sensitive (Woodward, 2006). Sensitive causes, in
turn, tend to be regarded as somewhat deficient, presumably
because they fail to support future predictions and interven-
tions in similar cases (Lombrozo, 2010; Lombrozo & Carey,
2006). As Garfinkel (1981) put it, if we want to explain the
occurrence of a particular outcome, our real object of expla-
nation is never just the occurrence of that particular outcome.
Instead, we search for stable causes that explain the occur-
rence of a whole equivalence class of inessentially different
outcomes. If we find out that a mechanism relates a cause to
a to-be-explained effect in only a small subset of cases within
the relevant equivalence class (e.g., it only works reliably in a
small number of exemplars of an otherwise apparently homo-
geneous kind), the cause does not provide a stable explanation
for this kind of effect. The discovered mechanism then turns
into an alternative explanation for the outcome that screens
off the influence of the distal cause from the explanandum.
This explanation captures not only the present data, but also
previous findings in which sensitivity of the mechanism was
not directly manipulated in statistical terms, but rather im-
plied by qualitative characteristics of the described mecha-

nism (e.g., moral abnormality; see Nagel & Stephan, 2015).
The fact that sensitive mechanisms lead to a decrease in ex-

planatory relevance of the distal cause A (rather than to an in-
crease in relevance of the proximal cause B) suggests that the
following psychological process might underlie the observed
phenomenon. When sensitive mechanisms are observed, it
becomes necessary to assume the influence of an additional,
latent variable that interacts with the distal cause A to pro-
duce proximal cause B in a few but not all contexts (e.g., an
abnormal preference structure of the teacher, or a genetic ab-
normality in Fish #1) in order to capture the structure of the
complete situation. The apparent necessity of this additional
variable for producing B (and, hence, C) makes it obvious
that A is not sufficient in producing B (and, hence, C) even
within the focal entity. Sufficiency, in turn, has been shown
to be closely linked to explanatory relevance (e.g. Hilton,
McClure, & Sutton, 2009; Kominsky, Phillips, Gerstenberg,
Lagnado, & Knobe, 2015). Future studies might aim to test
this hypothesis more specifically.
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Abstract

Consider the following causal explanation: The ball went
through the goal because the defender didn’t block it. There
are at least two problems with citing omissions as causal ex-
planations. First, how do we choose the relevant candidate
omission (e.g. why the defender and not the goalkeeper). Sec-
ond, how do we determine what would have happened in the
relevant counterfactual situation (i.e. maybe the shot would
still have gone through the goal even if it had been blocked).
In this paper, we extend the counterfactual simulation model
(CSM) of causal judgment (Gerstenberg, Goodman, Lagnado,
& Tenenbaum, 2014) to handle the second problem. In two ex-
periments, we show how people’s causal model of the situation
affects their causal judgments via influencing what counterfac-
tuals they consider. Omissions are considered causes to the
extent that the outcome in the relevant counterfactual situation
would have been different from what it actually was.
Keywords: causality; counterfactuals; causation by omission;
causal attribution; mental simulation.

Introduction
Billy is on his way home. He is driving on a lonely country

road, when he notices a damaged car next to the road. The
car seems to have collided with a tree, and the driver appears
unconscious. Billy decides not to stop and keeps driving. A
few days later, Billy reads in the newspaper that the driver
died because he had not received any medical attention.

Many people would concur that Billy’s not having stopped
was causally relevant for the driver’s death. However, there
are two fundamental problems with citing omissions (i.e.,
events that did not happen) as causes. First, there is the
problem of causal selection. Why cite Billy’s not stopping
as causally relevant for the driver’s death? Why not cite the
Queen of England? Second, there is the problem of under-
specification. Assuming that Billy would have stopped to
check on the driver, what would he have done? Would Billy’s
acting have prevented the driver’s death, or would she have
died anyway?

In this paper, we show how the counterfactual simulation
model (CSM) of causal judgment developed in Gerstenberg,
Goodman, Lagnado, and Tenenbaum (2012) (see also Ger-
stenberg et al., 2014; Gerstenberg, Goodman, Lagnado, &
Tenenbaum, 2015) provides a natural solution to the under-
specification problem. The CSM predicts that an omission
is a cause when the positive event that is chosen as its re-
placement would have changed the outcome of interest. More
specifically, we show how people’s causal model of a sit-
uation guides their selection of the relevant counterfactual
which subsequently determines their judgment about whether
the omission made a difference to the outcome.

The paper is organized as follows: We first describe the
causal selection and the underspecification problem in more
detail. We then propose an extension to the CSM as a solution
to the underspecification problem. Thereafter, we present and
discuss the results of two experiments which test the CSM.

The Causal Selection Problem
Many philosophers argue that counterfactual approaches to

causation are too inclusive when it comes to omissions (e.g.
McGrath, 2005). If Billy had stopped and checked on the
unconscious driver, the driver would not have died. Conse-
quently, the driver died because Billy did not stop. How-
ever, following this logic, the same counterfactual seems to
be true for the Queen of England. If the Queen of England
had stopped, the driver would not have died either. However,
intuitively, it is Billy’s omission that was causally relevant,
and not the Queen’s. The problem of causal selection has
been intensively discussed in both philosophy and empirical
studies (e.g. Hesslow, 1988). Interestingly, while the causal
selection problem presents a challenge to certain philosophi-
cal theories of causation, laypeople do not have any difficulty
in selecting the cause of the driver’s death. Based on evidence
from research on causal cognition, it has been suggested that
the concept of causation is not a purely descriptive one, but
that it depends on reasoners’ expectations (Willemsen, 2016).
While we would have expected Billy to stop and help, we
didn’t entertain any such expectation for the Queen.

The Underspecification Problem
When it comes to omissive causation a fundamental prob-

lem is how to define the relevant counterfactual contrast (cf.
Schaffer, 2005). For positive events (“something happened”),
the counterfactual contrast (“it didn’t happen”) is often well-
defined. However, replacing a negative event with a positive
event seems more problematic because there are a infinitely
many ways in which events can come about. If Billy actually
helped the driver, it seems to be pretty clear what would have
happened if he had not helped (he would just have continued
to drive on). However, if Billy did not help, it is unclear what
would have happened if he had helped (would he have helped
in a competent manner to prevent the driver’s death, or would
he have been too nervous and screwed things up?).

While the causal selection problem has received much at-
tention in the literature (e.g., Henne, Pinillos, & De Brigard,
2015; Livengood & Machery, 2007), the underspecification
problem has not. One exception is the account by Wolff,
Barbey, and Hausknecht (2010) that addresses both problems.
The general idea proposed by Wolff et al. (2010) is that cau-
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sation by omission is linked to the removal of an actual (or
anticipated) force that previously prevented a certain outcome
from occurring. One problem of this account, however, is that
it appears too restrictive in that it cannot account for cases in
which no (apparent) force is removed. Imagine, for instance,
sentences like “The lack of rain caused the drought in Soma-
lia”. Here, it would be a stretch to think of a the lack of rain
as the removal of a force.

The extension of the CSM that we propose in this paper
provides a different solution to the underspecification prob-
lem. Previous research has suggested that the extent to which
a certain counterfactual is relevant is a function of both how
likely we are to consider it, and how likely it would have
changed the outcome of interest (Petrocelli, Percy, Sherman,
& Tormala, 2011). However, while this research has shown
that these counterfactual probabilities affect people’s causal
judgments, it doesn’t explain how we come up with the rele-
vant probabilities in the first place. Here, we will show how
the CSM provides a natural solution to determine whether an
omission made a difference to the outcome.

Counterfactual Simulation and Omission
The CSM predicts that people make causal judgments by

comparing what actually happened with the outcome of a
counterfactual simulation. So far, the model has been applied
to capturing participants’ judgments about events that actu-
ally happened (Gerstenberg et al., 2012, 2014, 2015). Con-
sider the situation shown in Figure 1b (bottom) illustrated as
the ideal path. Here, A collides with B and B subsequently
goes through the gate. The CSM says that ball A’s colliding
with ball B caused ball B to go through the gate in this case,
because it is obvious that ball B would have missed the gate
but for the collision with A. More generally, the CSM pre-
dicts that causal judgments are a function of the reasoner’s
subjective degree of belief that the candidate cause made a
difference to the outcome. More formally, we can express the
degree of belief that x caused y as

P(x. y) = P(y′ 6= y|S ,do(x′)), (1)

in which x denotes the event of ball A hitting ball B, and the
outcome y captures the event of ball B going through the gate.
We first condition on what actually happened S (i.e., the mo-
tion paths of each ball, the position of the walls, etc.). We then
intervene to set the candidate cause event x to be different
from what it was in the actual situation, do(x′). Finally, we
evaluate the probability that the outcome in this counterfac-
tual situation y′ would have been different from the outcome
y that actually happened. The results of several experiments
(cf. Gerstenberg et al., 2012, 2014, 2015) have revealed that
there exists a tight relationship between the counterfactual
judgments of one group of participants (about what would
have happened if the candidate cause had been absent), and
the causal judgments of another group of participants.

To model causal judgments about positive events, the CSM
considers counterfactuals in which the positive event (ball A
colliding with B) is simply removed from the scene (indicated
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(b) Did B miss the gate because A did
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Figure 1: Illustration of what actually happened (top) and the coun-
terfactual simulation model (bottom). The diagrams illustrate the
actual path that ball B took, as well as an ideal path for (a) A pre-
venting B from going through the gate, or (b) A causing B to go
through the gate. The sampled paths show example simulations that
result from applying implementation noise to the ideal path. Note:
In (a), A would have prevented B from going through the gate for
both sampled paths. In (b), A would have caused B go through the
gate in one sample but not so in the other in which B would still have
missed even though A hit B.

by do(x′) in Equation1). Things become more intricate, how-
ever, when we want to model omissions as causes. As dis-
cussed above, it is often straightforward to replace an event
with a non-event (e.g., a collision with no collision), but it
is less clear how to replace a non-event with an event. Con-
sider the situation shown in Figure 1a. Did ball B go through
the gate because ball A did not hit it? The problem is that
there are infinitely many ways for ball A to collide with ball
B. Which of these events are we to consider? The collision
event is severely underspecified. We will now show how the
CSM can be extended to yield predictions about omissions as
causes, and thereby provide a solution to the underspecifica-
tion problem.

Modeling Omissions
We assume that people solve the underspecification prob-

lem by sampling counterfactual possibilities based on their
intuitive understanding of the situation (cf. Kahneman &
Tversky, 1982). The extent to which the omission is viewed
as a cause of the outcome is assumed to be a function of the
proportion of samples in which the outcome would have been
different from what actually happened, assuming that the type
of counterfactual event of interest was realized. Let us illus-
trate how the model works by example of the situation de-
picted in Figure 1a. In the actual situation, ball A did not
move and ball B went right through the middle of the gate.
We want to determine to what extent A’s not hitting ball B
was a cause of B’s going through the gate. To do so, we sim-
ulate what would have happened if ball A had collided with
B. More specifically, we need to determine the time t at which
A would have started to move, the direction d in which ball
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A would have moved, and the velocity v. Once we have de-
termined these quantities, we can simulate what would have
happened. For many combinations of values for t, d, and v
ball A would not have collided with ball B. We can discard
all such situations since we are interested in evaluating what
would have happened if ball A had hit ball B. For each situ-
ation in which the two balls collide, we record what the out-
come would have been – would B have missed the gate, or
would it still have gone through the gate? We can now obtain
the probability that ball A’s not hitting ball B was a cause of
ball B’s going through the gate (cf. Equation 1) by looking at
the proportion of samples in which B would have missed the
gate instead of going through.

But how do we determine what values to take for t, d, and
v which jointly determine what counterfactual situation we
consider? We predict that prior expectations guide the coun-
terfactuals we consider. In Experiment 1 below, we contrast
situations in which participants don’t have any expectations
about what normally happens, with situations in which par-
ticipants have statistical, or social expectations. We will now
discuss how the model incorporates these expectations.

Expectations Shape Counterfactual Simulations
No Expectations Let us first assume a situation in which
an observer does not have any strong expectations concern-
ing how the balls typically move in the given context. When
asked whether A’s not hitting B caused B to go through the
gate, we have to generate situations in which A would have hit
B. This already considerably constrains what kinds of situa-
tions we consider. For example, it would be futile to consider
situations in which A only starts moving after B already went
through the gate, or in which A moved toward the right.

We generated counterfactual samples in the following way:
We first discretized the space for the time at which A starts
moving t, the direction in which it moves d, and its velocity
v. For t, we considered all values from 0 to toutcome where 0
corresponds to the time at which B starts moving and toutcome
to the time at which ball B went through the gate (or hit the
wall). For d, we considered the full range from A going
straight to the left to going straight up. For v, we consid-
ered a reasonable range from A moving slowly to A moving
fast. For each generated world, we noted whether A and B
collided, and whether B went through the gate or missed the
gate. We then discarded all situations in which the two balls
did not collide, and recorded the proportion of situations in
which B would have gone through the gate if the balls had
collided.

The model makes the following predictions: For the situa-
tion in which B is on a path toward the gate (Figure1a), there
is a good chance that B would have missed the gate if ball
A had hit it. The model predictions are shown in Figure2.
As can be seen in the left panel, the CSM concludes that the
probability that B would have missed the gate had A hit it is
just as high as the probability that B would have passed the
gate. By contrast, when B is on a path away from the gate
(“missed” in Figure 2, cf. Figure 1b top right) there is only a

relatively small chance that ball B would have gone through
the gate if ball A had hit it. Thus, the CSM predicts that peo-
ple will be more likely to agree that ball B went through the
gate because ball A did not hit it than they will be to agree
that ball B missed the gate because ball A did not hit it.

Social Expectations When nothing particular is known
about how A and B typically move, the space of counter-
factuals from which the CSM samples is relatively wide. It
seems plausible, however, that what counterfactual possibili-
ties are considered will be affected by different forms of prior
expectations. Imagine, for example, that you learn that two
players play a marble game. Player B wants to get her mar-
ble into the goal, while Player A wants to make sure that this
does not happen. On a particular trial, Player A did not pay
attention and forgot to flick his marble. Did Player B’s mar-
ble go through the gate because Player A’s marble did not hit
it? When knowing that it is a player’s job to prevent a mar-
ble from going through the gate, people may expect that this
player would not have just flicked her marble randomly. In-
stead, she can be expected to try her best to make sure that
the other marble does not go through the gate. Similarly, con-
sider a situation in which Player A also wants that Player B’s
marble goes through the gate. In that case, it seems likely that
Player A will try to flick his marble so that it makes sure that
B’s marble will go through the gate.

Figure 1 illustrates how the CSM incorporates how prior
expectations constrain the space of counterfactual situations.
We assume that the player would first determine a time t at
which to flick her marble. For any given point t, the player
then determines an optimal d and v conditional on the player’s
goals. For a player who wants to prevent ball B from going
through the gate, the player’s goal is to maximize the distance
between B’s position and the middle of the gate. For a player
who wants to cause B to go through the gate, the player’s goal
is to minimize the distance between B’s position and the mid-
dle of the gate (i.e., she wants B to go right through the middle
of the gate). For simplicity, we assume that players can plan
their action optimally, but that they have some implementa-
tion noise. The CSM models this implementation noise by
introducing a small perturbation to the ideal path on which
A moves. As is illustrated in Figure1, the CSM incorporates
implementation noise by slightly perturbing the “ideal path”
vector.

Figure 1 shows the actual path that ball B took, the ideal
paths that player A “wanted” the marbles to take, and two
examples for paths that ball B actually took after subjecting
A’s ideal plan to some implementation noise. Notice that the
implementation noise has a larger effect in Figure 1b where
it leads to a situation in which ball B would have missed the
gate even though ball A hit it. In contrast, in Figure 1a the im-
plementation noise has less of an effect. Here, ball B would
reliably miss the gate even if we apply some implementation
noise to player A’s intended plan. Accordingly, the CSM pre-
dicts that it is more likely that A’s hitting B would have re-
sulted in B missing the gate (when B actually went through,
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Figure 1a) than it would have resulted in B going through the
gate (when B actually missed, Figure 1b). Since the sam-
ple of considered situations is biased toward optimal actions,
the CSM predicts that judgments will overall be higher than
when an observer does not have any prior expectations. The
predictions for this situation are shown in the middle panel in
Figure 2.
Statistical Expectations Now imagine that instead of learn-
ing anything about agents playing a game you get to see a few
situations first that shape your expectations about what tends
to happen. We incorporate such “statistical” expectations into
the model in the same way in which we handled social expec-
tations. However, we allow for the implementation noise to
be different between these situations. Specifically, the size of
the implementation noise parameter will depend on the kind
of evidence that participants have seen. For example, if one
has witnessed a series of trials in which A always hit B in
such a way that B went straight through the gate, this would
suggest a smaller implementation noise compared to one that
is suggested by trials in which A hit B in such a way that B
went through the gate in, for example, merely two third of the
cases. The predictions for this situation are shown in the right
panel in Figure 2.

Experiment 1
Experiment 1 tests whether the CSM accurately predicts

people’s causal judgments for omissions in dynamic phys-
ical scenes. We look at causal judgments about situations
in which ball A failed to hit ball B, and ball B either went
through or missed the gate (see Figure 1). In line with the
CSM, we predict that the degree to which people judge ball
A’s not hitting ball B as causally relevant to the outcome
would be tightly coupled with the results of a mental sim-
ulation about what would have happened if a collision had
occurred. Furthermore, we test the hypothesis that different
types of expectations (social or statistical) influence people’s
causal judgments by affecting what counterfactual situations
people consider.

Methods
Participants and Materials 476 participants (239 female,
MAge = 33.83 years, SDAge = 12.03 years) were recruited
via Prolific Academic (www.prolific.ac) and participated
in this experiment for a monetary compensation of £ 0.25.
The clips were created in Adobe Flash CS5 using the physics
engine Box2D.
Design and Procedure All factors were manipulated be-
tween subjects. We manipulated what actually happened (ac-
tual outcome: missed vs. went through), and the expecta-
tions of participants about what will happen (expectation: no
expectations, statistical expectation, social expectation). Fi-
nally, we varied whether participants answered a causal ques-
tion, or a (counterfactual) probability question (question: cau-
sation vs. probability).

In the “no expectations” condition, subjects simply read
that they will see an animation in which a stage with solid
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Figure 2: Experiment 1. Mean causal and probability judgments
together with the predictions of the CSM. Note: Error bars indicate
95% bootstrapped CIs.

walls, two balls A and B, and a gate will be displayed. All
subjects were shown a graphical illustration of the stimuli.
Participants in the “statistical expectation” condition were
presented four primer clips in which ball B actually collided
with A. One group of subjects saw that the collision always
caused B to go through the gate, while the other half always
saw that A prevented B from going through the gate (see Fig-
ure 1). In the “social expectation” condition, subjects were
instructed that the video clip (which was the same as in the
“no expectations”) shows what happened during a game of
marbles played by two agents, Andy and Ben. We manipu-
lated whether subjects believed that Andy wants to help Ben
to flip his marble through the gate or whether he wants to
hinder Ben from doing so.

Participants in the “causation” condition indicated how
much they agreed with the claim that B missed the gate be-
cause A did not hit it, or that B went through the gate because
A did not hit it, depending on the outcome. Participants in
the “probability” condition gave a corresponding probability
judgment: they indicated what they believed the chances were
that B would have gone through / missed the gate if ball A
had hit ball B. Participants indicated their ratings on a sliding
scale.

Which outcome participants saw depended on the expec-
tation condition: In the “social expectation” condition, par-
ticipants who expected the agent to help saw that B actually
missed the gate, and participants who expected the agent to
hinder saw that B went through the gate. In the “statistical
expectations” condition, participants who had seen the cau-
sation clips saw that B missed the gate, whereas those who
had seen the prevention clips saw that B went through the
gate.

Results and Discussion
Figure 2 shows participants’ mean causal ratings (white

bars), probability ratings (gray bars), as well as the predic-
tions of the CSM (black bars). The CSM correctly predicts a
difference in agreement ratings for both the causal and proba-
bility condition as a function of the outcome (went through
vs. missed). A global 2 (question) × 6 (combination of
expectation and outcome) factorial ANOVA shows a main
effect of outcome, F(5,464) = 14.51, p < .001, η2

G = .61
but no main effect of question, F(1,464) < 1. The in-
teraction between question and expectation was significant,
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F(5,464) = 2.74, p < .05 but the effect is small, η2
G = .03.

Importantly, participants saw A’s not hitting ball B as more
causal when B went through the gate compared to when it
missed. This pattern was predicted by the CSM and indicates
that participants’ counterfactual simulations and their causal
inferences were sensitive to the constraints imposed by the
virtual physical environment. Because the displayed gate was
relatively small, the probability that a collision would change
the outcome is higher if B actually went though, than when it
missed. Planned contrasts confirmed that the observed differ-
ences between “went through” and “missed” were significant
in all conditions, with t(464) = 3.21, p < .01, r = .15 in the
“no expectations” condition, t(464) = 2.13, p < .05, r = .10
in the “statistical expectation” condition, and t(464) = 3.53,
p < .001, r = .16 in the “social expectation” condition.

Besides the asymmetry between “went through” and
“missed”, we also expected to see higher causality ratings in
the “statistical” and “social expectation” conditions than in
the “no expectation” condition. This difference was predicted
because we incorporated an ideal path in these situation that
was then perturbed by imposing some implementation noise.
As Figure 2 shows, we did indeed observe this pattern. A
planned contrast confirmed that this difference was signifi-
cant, t(464) = 5.98, p < .001, r = .27.

Concerning the probability ratings, planned contrasts
showed that the difference between “went through” and
“missed” was significant in the “no expectations condition”,
t(464) = 2.33, p < .05, r = .11, and the “statistical expec-
tation” condition, t(464) = 1.73, p < .05, r = .08, but not
in the “social expectation” condition, t(464) < 1. Concern-
ing the predicted difference between the “no expectations”
condition and the other two expectation conditions, Figure 2
shows that we obtained a similar pattern as for the causal-
ity judgments. In line with our expectations, the probability
ratings for the “statistical expectation” and the “social expec-
tation” condition were higher than the ratings for the “no ex-
pectation” condition, t(464) = 2.82, p < .01, though this
effect was smaller than the effect for the causality judgments,
r = .13.

The results of Experiment 1 show that participants’ causal
judgments are qualitatively well accounted for by the CSM.
The CSM also does a good job in accounting for the pattern
quantitatively, as evidenced by a high correlation between
model predictions and counterfactual probability judgments
(r = .97,RMSE = 14.00), as well as between model predic-
tions and causal judgments (r = .97,RMSE = 6.06). The fact
that the model accounts slightly less well for the counterfac-
tual probability judgments is mainly due to the relatively large
difference between model predictions and probability judg-
ments in the “no expectations” condition.

A key finding in Experiment 1 is the asymmetry in partici-
pants’ causal judgments as a function of whether ball B went
through or missed the gate. The CSM predicts this pattern be-
cause it is more likely that A’s hitting B would prevent B from
going through the gate (cf. Figure 1a) than that it would cause

(a) Did the ball go through the gate
because the wall did not move?
(M = 87.51, ±95% CI = 7.67)

(b) Did the ball miss the gate because
the wall did not move?

(M = 89.00, ±95% CI = 8.37)

Figure 3: Illustration of the materials used in Experiment 2. Solid
arrows indicate the actual path of the ball; dashed arrows show the
hypothetical path of the wall. Graph (a) shows the “went through”
and (b) the “missed” condition. The results for both conditions are
included in brackets.

B to go through (cf. Figure 1b). One possibility, however,
that Experiment 1 cannot rule out is that people are in general
more likely to regard omissions as causes when the relevant
counterfactual involves preventing compared to causing. In
Experiment 2, we investigate whether there is such a general
asymmetry between omissive causation and prevention.

Experiment 2
The goal of Experiment 2 was to rule out that the observed

difference between “went through” and “missed” in Exper-
iment 1 came about because people generally treat omissive
causation and omissive prevention differently. The CSM only
predicts an asymmetry between two situations when the pos-
itive event of interest was more likely to make a difference
in one situation compared to the other. Hence, our strategy
in Experiment 2 was to hold this probability constant. To
achieve this goal, we simply replaced ball A with a wall that
had exactly the size of the gate. To model “missed” and “went
through”, we varied whether the wall blocked the gate or not,
while a displayed ball always headed toward the gate (see
Figure 3). Participants rated how much they agree that “the
ball” missed the gate (or went through the gate) because the
wall did not move. There is no ambiguity about the relevant
counterfactual in this case – it is clear that the outcome would
have been different, had the wall moved. Accordingly, the
CSM predicts that participants’ judgments should be high for
both cases, no matter whether the ball went through the gate
or missed the gate because of the omission.

Method
Participants 65 participants (40 female, Mage = 32.86,
SDage = 12.84) who were again recruited via Prolific Aca-
demic completed this online experiment and received a mon-
etary compensation of £ 0.25.
Design, Materials, and Procedure The final outcome, that
is, whether the ball went through or missed the gate (see Fig-
ure 3) was manipulated between subjects. The instructions
were similar those used in the “no expectations” condition in
Experiment 1. Further, participants were presented an illus-
tration showing the materials in which it was made clear that
the wall can only be in two different positions, either right
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in front of the gate or in the upper left corner of the stage
(see Figure 3). Having read the instructions, participants were
shown the respective video clip and provided the causal rating
after the clip was finished.

Results and Discussion
As expected, participants gave very high causal ratings

for “went through” (M = 87.51, SD = 21.62) and “missed”
(M = 89.00, SD = 23.21). As predicted by the CSM, the
ratings were not different from each other, t(63) < 1. The
probability that the outcome would have been different in the
relevant counterfactual, is close to maximal in both condi-
tions.

The results of Experiment 2 are in line with the CSM. Fur-
ther, the fact that the causality ratings were both very high
and not different from each other rules out the potential alter-
native explanation that people might generally treat omissive
causation and omissive prevention differently.

General Discussion
We developed an extension of the Counterfactual Simula-

tion Model to account for causation by omission. Based on
previous research by Gerstenberg et al. (2014), we reasoned
that people’s causal judgments are closely linked to their sub-
jective degree of belief that the outcome would have been dif-
ferent had the candidate cause been replaced. We argued that
this replacement by a counterfactual contrast is particularly
difficult in cases of omissions. The counterfactual contrast to
“did not hit” is clearly “had hit”, but it remains unclear what
would have happened if “hitting” had taken place.

In two experiments we shed light on how to tackle the
underspecification problem. We predicted that prior expec-
tations would constrain what counterfactual contrasts people
consider relevant to the scenario. Experiment 1 revealed an
asymmetry: A’s not hitting B was judged less causal when
B missed the gate compared to when B went through the
gate. This is what the CSM predicts, and the results thus
lend additional support to the hypothesis that causal judg-
ments are grounded in counterfactually simulated probabil-
ities. Adding expectations increased both people’s causal
judgments as well as their subjective degree of belief that a
counterfactual collision would changed the outcome. This ef-
fect was particularly strong for social expectations, which the
CSM explains by assuming that knowledge about intentions
of agents limits the range of counterfactuals that are consid-
ered. Our results thus add to previous research indicating that
intentional actions signal higher causal stability compared to
unintentional ones (Lombrozo, 2010), and that causal stabil-
ity is indeed a relevant dimension that affects causal reason-
ing (Nagel & Stephan, 2016).

It might be objected that the asymmetry in causal attri-
bution for “went through” and “missed” in Experiment 1 is
not due to a difference in what would have happened in the
relevant counterfactual simulations, but rather due to an in-
herent asymmetry between omissions that prevent and omis-
sions that cause. Experiment 2 addressed this possible con-

found by looking at situations in which the relevant coun-
terfactual event was clear (a wall that could only move in
one direction), as well as what would have happened in case
that event had happened. Just as predicted, we found that
causal ratings were equally high irrespective of whether the
ball “went through” and “missed” in this case. Instead of a
general asymmetry between prevention and causation, partic-
ipants judge omissions to be causal the more certain they are
that the omission made a difference to the outcome.

As our introductory example demonstrates, omissions are
particularly relevant in human interaction, especially so in
morally or legally charged situations when we had clear ex-
pectations about what a person should have done. In this
paper, we have shown how the CSM accounts for people’s
causal judgments of omissions in situations in a physical do-
main in which the relevant counterfactuals are relatively well
constrained. However, we believe that the CSM has the po-
tential to capture causal judgments about omissions of social
agents as well. For example, the extent to which we blame
someone for not having helped depends on how easy it would
have been for the agent to help (cf. Jara-Ettinger, Tenenbaum,
& Schulz, 2015). In future research, we will explore the CSM
in a richer social setup.
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